360IMAGES / app.py
huanngzh's picture
remove cache
de544c4
import random
import gradio as gr
import numpy as np
import spaces
import torch
from torchvision import transforms
from transformers import AutoModelForImageSegmentation
from inference_i2mv_sdxl import prepare_pipeline, remove_bg, run_pipeline
# Device and dtype
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
# Hyperparameters
NUM_VIEWS = 6
HEIGHT = 768
WIDTH = 768
MAX_SEED = np.iinfo(np.int32).max
pipe = prepare_pipeline(
base_model="stabilityai/stable-diffusion-xl-base-1.0",
vae_model="madebyollin/sdxl-vae-fp16-fix",
unet_model=None,
lora_model=None,
adapter_path="huanngzh/mv-adapter",
scheduler=None,
num_views=NUM_VIEWS,
device=device,
dtype=dtype,
)
# remove bg
birefnet = AutoModelForImageSegmentation.from_pretrained(
"ZhengPeng7/BiRefNet", trust_remote_code=True
)
birefnet.to(device)
transform_image = transforms.Compose(
[
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
@spaces.GPU()
def infer(
prompt,
image,
do_rembg=True,
seed=42,
randomize_seed=False,
guidance_scale=3.0,
num_inference_steps=30,
reference_conditioning_scale=1.0,
negative_prompt="watermark, ugly, deformed, noisy, blurry, low contrast",
progress=gr.Progress(track_tqdm=True),
):
if do_rembg:
remove_bg_fn = lambda x: remove_bg(x, birefnet, transform_image, device)
else:
remove_bg_fn = None
if randomize_seed:
seed = random.randint(0, MAX_SEED)
if isinstance(seed, str):
try:
seed = int(seed.strip())
except ValueError:
seed = 42
images, preprocessed_image = run_pipeline(
pipe,
num_views=NUM_VIEWS,
text=prompt,
image=image,
height=HEIGHT,
width=WIDTH,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
seed=seed,
remove_bg_fn=remove_bg_fn,
reference_conditioning_scale=reference_conditioning_scale,
negative_prompt=negative_prompt,
device=device,
)
return images, preprocessed_image, seed
examples = [
[
"A decorative figurine of a young anime-style girl",
"assets/demo/i2mv/A_decorative_figurine_of_a_young_anime-style_girl.png",
True,
21,
],
[
"A juvenile emperor penguin chick",
"assets/demo/i2mv/A_juvenile_emperor_penguin_chick.png",
True,
0,
],
[
"A striped tabby cat with white fur sitting upright",
"assets/demo/i2mv/A_striped_tabby_cat_with_white_fur_sitting_upright.png",
True,
0,
],
]
with gr.Blocks() as demo:
with gr.Row():
gr.Markdown(
f"""# MV-Adapter [Image-to-Multi-View]
Generate 768x768 multi-view images from a single image using SDXL <br>
[[page](https://huanngzh.github.io/MV-Adapter-Page/)] [[repo](https://github.com/huanngzh/MV-Adapter)] [Tips: if error occurs, wait for a few seconds and try again]
"""
)
with gr.Row():
with gr.Column():
with gr.Row():
input_image = gr.Image(
label="Input Image",
sources=["upload", "webcam", "clipboard"],
type="pil",
)
preprocessed_image = gr.Image(label="Preprocessed Image", type="pil")
prompt = gr.Textbox(
label="Prompt", placeholder="Enter your prompt", value="high quality"
)
do_rembg = gr.Checkbox(label="Remove background", value=True)
run_button = gr.Button("Run")
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=30,
)
with gr.Row():
guidance_scale = gr.Slider(
label="CFG scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=3.0,
)
with gr.Row():
reference_conditioning_scale = gr.Slider(
label="Image conditioning scale",
minimum=0.0,
maximum=2.0,
step=0.1,
value=1.0,
)
with gr.Row():
negative_prompt = gr.Textbox(
label="Negative prompt",
placeholder="Enter your negative prompt",
value="watermark, ugly, deformed, noisy, blurry, low contrast",
)
with gr.Column():
result = gr.Gallery(
label="Result",
show_label=False,
columns=[3],
rows=[2],
object_fit="contain",
height="auto",
)
with gr.Row():
gr.Examples(
examples=examples,
fn=infer,
inputs=[prompt, input_image, do_rembg, seed],
outputs=[result, preprocessed_image, seed],
# cache_examples=True,
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
input_image,
do_rembg,
seed,
randomize_seed,
guidance_scale,
num_inference_steps,
reference_conditioning_scale,
negative_prompt,
],
outputs=[result, preprocessed_image, seed],
)
demo.launch()