Spaces:
Sleeping
Sleeping
import os | |
import cv2 | |
import torch | |
import gfpgan | |
from PIL import Image | |
from upscaler.RealESRGAN import RealESRGAN | |
from upscaler.codeformer import CodeFormerEnhancer | |
def gfpgan_runner(img, model): | |
_, imgs, _ = model.enhance(img, paste_back=True, has_aligned=True) | |
return imgs[0] | |
def realesrgan_runner(img, model): | |
img = model.predict(img) | |
return img | |
def codeformer_runner(img, model): | |
img = model.enhance(img) | |
return img | |
supported_enhancers = { | |
"CodeFormer": ("./assets/pretrained_models/codeformer.onnx", codeformer_runner), | |
"GFPGAN": ("./assets/pretrained_models/GFPGANv1.4.pth", gfpgan_runner), | |
"REAL-ESRGAN 2x": ("./assets/pretrained_models/RealESRGAN_x2.pth", realesrgan_runner), | |
"REAL-ESRGAN 4x": ("./assets/pretrained_models/RealESRGAN_x4.pth", realesrgan_runner), | |
"REAL-ESRGAN 8x": ("./assets/pretrained_models/RealESRGAN_x8.pth", realesrgan_runner) | |
} | |
cv2_interpolations = ["LANCZOS4", "CUBIC", "NEAREST"] | |
def get_available_enhancer_names(): | |
available = [] | |
for name, data in supported_enhancers.items(): | |
path = os.path.join(os.path.abspath(os.path.dirname(__file__)), data[0]) | |
if os.path.exists(path): | |
available.append(name) | |
return available | |
def load_face_enhancer_model(name='GFPGAN', device="cpu"): | |
assert name in get_available_enhancer_names() + cv2_interpolations, f"Face enhancer {name} unavailable." | |
if name in supported_enhancers.keys(): | |
model_path, model_runner = supported_enhancers.get(name) | |
model_path = os.path.join(os.path.abspath(os.path.dirname(__file__)), model_path) | |
if name == 'CodeFormer': | |
model = CodeFormerEnhancer(model_path=model_path, device=device) | |
elif name == 'GFPGAN': | |
model = gfpgan.GFPGANer(model_path=model_path, upscale=1, device=device) | |
elif name == 'REAL-ESRGAN 2x': | |
model = RealESRGAN(device, scale=2) | |
model.load_weights(model_path, download=False) | |
elif name == 'REAL-ESRGAN 4x': | |
model = RealESRGAN(device, scale=4) | |
model.load_weights(model_path, download=False) | |
elif name == 'REAL-ESRGAN 8x': | |
model = RealESRGAN(device, scale=8) | |
model.load_weights(model_path, download=False) | |
elif name == 'LANCZOS4': | |
model = None | |
model_runner = lambda img, _: cv2.resize(img, (512,512), interpolation=cv2.INTER_LANCZOS4) | |
elif name == 'CUBIC': | |
model = None | |
model_runner = lambda img, _: cv2.resize(img, (512,512), interpolation=cv2.INTER_CUBIC) | |
elif name == 'NEAREST': | |
model = None | |
model_runner = lambda img, _: cv2.resize(img, (512,512), interpolation=cv2.INTER_NEAREST) | |
else: | |
model = None | |
return (model, model_runner) | |