File size: 9,504 Bytes
074f838
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9297d37
074f838
f82a1c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
074f838
9b03d6f
074f838
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b03d6f
074f838
 
f82a1c7
074f838
 
 
f82a1c7
074f838
 
f82a1c7
276ccc4
8e45d3e
 
276ccc4
074f838
 
 
 
 
 
 
 
 
 
 
 
 
 
f82a1c7
f6fc95e
f82a1c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6fc95e
f82a1c7
074f838
 
 
 
90bd918
 
074f838
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b7ae5d
276ccc4
074f838
 
 
 
 
 
f82a1c7
 
074f838
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import urllib.request
import fitz
import re
import numpy as np
import tensorflow_hub as hub
import openai
import gradio as gr
import os
from sklearn.neighbors import NearestNeighbors

def download_pdf(url, output_path):
    urllib.request.urlretrieve(url, output_path)


def preprocess(text):
    text = text.replace('\n', ' ')
    text = re.sub('\s+', ' ', text)
    return text


def pdf_to_text(path, start_page=1, end_page=None):
    doc = fitz.open(path)
    total_pages = doc.page_count

    if end_page is None:
        end_page = total_pages

    text_list = []

    for i in range(start_page-1, end_page):
        text = doc.load_page(i).get_text("text")
        text = preprocess(text)
        text_list.append(text)

    doc.close()
    return text_list


def text_to_chunks(texts, word_length=150, start_page=1):
    text_toks = [t.split(' ') for t in texts]
    page_nums = []
    chunks = []
    
    for idx, words in enumerate(text_toks):
        for i in range(0, len(words), word_length):
            chunk = words[i:i+word_length]
            if (i+word_length) > len(words) and (len(chunk) < word_length) and (
                len(text_toks) != (idx+1)):
                text_toks[idx+1] = chunk + text_toks[idx+1]
                continue
            chunk = ' '.join(chunk).strip()
            chunk = f'[Page no. {idx+start_page}]' + ' ' + '"' + chunk + '"'
            chunks.append(chunk)
    return chunks


class SemanticSearch:
    
    def __init__(self):
        self.use = hub.load('https://tfhub.dev/google/universal-sentence-encoder/4')
        self.fitted = False
    
    
    def fit(self, data, batch=1000, n_neighbors=5):
        self.data = data
        self.embeddings = self.get_text_embedding(data, batch=batch)
        n_neighbors = min(n_neighbors, len(self.embeddings))
        self.nn = NearestNeighbors(n_neighbors=n_neighbors)
        self.nn.fit(self.embeddings)
        self.fitted = True
    
    
    def __call__(self, text, return_data=True):
        inp_emb = self.use([text])
        neighbors = self.nn.kneighbors(inp_emb, return_distance=False)[0]
        
        if return_data:
            return [self.data[i] for i in neighbors]
        else:
            return neighbors
    
    
    def get_text_embedding(self, texts, batch=1000):
        embeddings = []
        for i in range(0, len(texts), batch):
            text_batch = texts[i:(i+batch)]
            emb_batch = self.use(text_batch)
            embeddings.append(emb_batch)
        embeddings = np.vstack(embeddings)
        return embeddings



def load_recommender(path, start_page=1):
    global recommender
    texts = pdf_to_text(path, start_page=start_page)
    chunks = text_to_chunks(texts, start_page=start_page)
    recommender.fit(chunks)
    return 'Corpus Loaded.'

def generate_text(openAI_key, prompt, model="gpt-3.5-turbo"):
    openai.api_key = openAI_key
    if model == "text-davinci-003":
        completions = openai.Completion.create(
            engine=model,
            prompt=prompt,
            max_tokens=512,
            n=1,
            stop=None,
            temperature=0.7,
        )
        message = completions.choices[0].text
    else:
        message = openai.ChatCompletion.create(
            model=model,
            messages=[
                {"role": "system", "content": "You are a helpful assistant."},
                {"role": "user", "content": prompt}
            ]
        ).choices[0].message['content']
    return message


def generate_answer(question, openAI_key,model):
    topn_chunks = recommender(question)
    prompt = ""
    prompt += 'search results:\n\n'
    for c in topn_chunks:
        prompt += c + '\n\n'
        
    prompt += "Instructions: Compose a comprehensive reply to the query using the search results given. "\
              "Cite each reference using [ Page Number] notation (every result has this number at the beginning). "\
              "Citation should be done at the end of each sentence. If the search results mention multiple subjects "\
              "with the same name, create separate answers for each. Only include information found in the results and "\
              "don't add any additional information. Make sure the answer is correct and don't output false content. "\
              "If the text does not relate to the query, simply state 'Found Nothing'. Ignore outlier "\
              "search results which has nothing to do with the question. Only answer what is asked. The "\
              "answer should be short and concise. \n\nQuery: {question}\nAnswer: "
    
    prompt += f"Query: {question}\nAnswer:"
    answer = generate_text(openAI_key, prompt, model)
    return answer

def question_answer(url, file, question, openAI_key, model):
    if openAI_key.strip()=='':
        return '[ERROR]: Please enter you Open AI Key. Get your key here : https://platform.openai.com/account/api-keys'
    if url.strip() == '' and file == None:
        return '[ERROR]: Both URL and PDF is empty. Provide at least one.'
    
    if url.strip() != '' and file != None:
        return '[ERROR]: Both URL and PDF is provided. Please provide only one (either URL or PDF).'
    
    if model is None or model =='':
        return '[ERROR]: You have not selected any model. Please choose an LLM model.'
        
    if url.strip() != '':
        glob_url = url
        download_pdf(glob_url, 'corpus.pdf')
        load_recommender('corpus.pdf')
    else:
        old_file_name = file.name
        file_name = file.name
        file_name = file_name[:-12] + file_name[-4:]
        os.rename(old_file_name, file_name)
        load_recommender(file_name)

    if question.strip() == '':
        return '[ERROR]: Question field is empty'

    if model == "text-davinci-003":
        return generate_answer_text_davinci_003(question, openAI_key)
    else:
        return generate_answer(question, openAI_key, model)


def generate_text_text_davinci_003(openAI_key,prompt, engine="text-davinci-003"):
    openai.api_key = openAI_key
    completions = openai.Completion.create(
        engine=engine,
        prompt=prompt,
        max_tokens=512,
        n=1,
        stop=None,
        temperature=0.7,
    )
    message = completions.choices[0].text
    return message


def generate_answer_text_davinci_003(question,openAI_key):
    topn_chunks = recommender(question)
    prompt = ""
    prompt += 'search results:\n\n'
    for c in topn_chunks:
        prompt += c + '\n\n'
        
    prompt += "Instructions: Compose a comprehensive reply to the query using the search results given. "\
              "Cite each reference using [ Page Number] notation (every result has this number at the beginning). "\
              "Citation should be done at the end of each sentence. If the search results mention multiple subjects "\
              "with the same name, create separate answers for each. Only include information found in the results and "\
              "don't add any additional information. Make sure the answer is correct and don't output false content. "\
              "If the text does not relate to the query, simply state 'Found Nothing'. Ignore outlier "\
              "search results which has nothing to do with the question. Only answer what is asked. The "\
              "answer should be short and concise. \n\nQuery: {question}\nAnswer: "
    
    prompt += f"Query: {question}\nAnswer:"
    answer = generate_text_text_davinci_003(openAI_key, prompt,"text-davinci-003")
    return answer


recommender = SemanticSearch()

title = 'PDF GPT Turbo'
description = """ PDF GPT Turbo allows you to chat with your PDF file using Universal Sentence Encoder and Open AI. It gives hallucination free response than other tools as the embeddings are better than OpenAI. The returned response can even cite the page number in square brackets([]) where the information is located, adding credibility to the responses and helping to locate pertinent information quickly."""


with gr.Blocks() as demo:

    gr.Markdown(f'<center><h1>{title}</h1></center>')
    gr.Markdown(description)

    with gr.Row():
        
        with gr.Group():
            gr.Markdown(f'<p style="text-align:center">Get your Open AI API key <a href="https://platform.openai.com/account/api-keys">here</a></p>')
            openAI_key=gr.Textbox(label='Enter your OpenAI API key here')
            url = gr.Textbox(label='Enter PDF URL here')
            gr.Markdown("<center><h4>OR<h4></center>")
            file = gr.File(label='Upload your PDF/ Research Paper / Book here', file_types=['.pdf'])
            question = gr.Textbox(label='Enter your question here')
            model = gr.Radio(['gpt-3.5-turbo', 'gpt-3.5-turbo-16k', 'gpt-3.5-turbo-0613', 'gpt-3.5-turbo-16k-0613', 'text-davinci-003'], label='Select Model', default='gpt-3.5-turbo')
            #model = gr.Dropdown(choices=['gpt-3.5-turbo', 'gpt-3.5-turbo-16k', 'gpt-3.5-turbo-0613', 'gpt-3.5-turbo-16k-0613', 'text-davinci-003'], label='Select Large Language Model', default='gpt-3.5-turbo')
            btn = gr.Button(value='Submit')
            btn.style(full_width=True)

        with gr.Group():
            answer = gr.Textbox(label='The answer to your question is :')

        #btn.click(question_answer, inputs=[url, file, question,openAI_key], outputs=[answer])
        btn.click(question_answer, inputs=[url, file, question, openAI_key, model], outputs=[answer])
#openai.api_key = os.getenv('Your_Key_Here') 
demo.launch()