Spaces:
Runtime error
Runtime error
import gradio as gr | |
import sys | |
import torch | |
import torchvision.transforms as T | |
import torchvision.transforms.functional as TF | |
sys.path.append('src/blip') | |
sys.path.append('src/clip') | |
import clip | |
from models.blip import blip_decoder | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
print("Loading BLIP model...") | |
blip_image_eval_size = 384 | |
blip_model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_large_caption.pth' | |
blip_model = blip_decoder(pretrained=blip_model_url, image_size=blip_image_eval_size, vit='large', med_config='./src/blip/configs/med_config.json') | |
blip_model.eval() | |
blip_model = blip_model.to(device) | |
print("Loading CLIP model...") | |
clip_model_name = 'ViT-L/14' | |
clip_model, clip_preprocess = clip.load(clip_model_name, device=device) | |
clip_model.to(device).eval() | |
def generate_caption(pil_image): | |
gpu_image = T.Compose([ | |
T.Resize((blip_image_eval_size, blip_image_eval_size), interpolation=TF.InterpolationMode.BICUBIC), | |
T.ToTensor(), | |
T.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)) | |
])(pil_image).unsqueeze(0).to(device) | |
with torch.no_grad(): | |
caption = blip_model.generate(gpu_image, sample=False, num_beams=3, max_length=20, min_length=5) | |
return caption[0] | |
def inference(image): | |
return generate_caption(image) | |
inputs = [gr.inputs.Image(type='pil')] | |
outputs = gr.outputs.Textbox(label="Output") | |
title = "CLIP Interrogator" | |
description = "First test of CLIP Interrogator on HuggingSpace" | |
article = """ | |
<p style='text-align: center'> | |
<a href="">Colab Notebook</a> / | |
<a href="">Github repo</a> | |
</p> | |
""" | |
gr.Interface( | |
inference, | |
inputs, | |
outputs, | |
title=title, description=description, | |
article=article, | |
examples=[['example.jpg']] | |
).launch(enable_queue=True) | |