import gradio as gr import sys import torch import torchvision.transforms as T import torchvision.transforms.functional as TF sys.path.append('src/blip') sys.path.append('src/clip') import clip from models.blip import blip_decoder device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') print("Loading BLIP model...") blip_image_eval_size = 384 blip_model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_large_caption.pth' blip_model = blip_decoder(pretrained=blip_model_url, image_size=blip_image_eval_size, vit='large', med_config='./src/blip/configs/med_config.json') blip_model.eval() blip_model = blip_model.to(device) print("Loading CLIP model...") clip_model_name = 'ViT-L/14' clip_model, clip_preprocess = clip.load(clip_model_name, device=device) clip_model.to(device).eval() def generate_caption(pil_image): gpu_image = T.Compose([ T.Resize((blip_image_eval_size, blip_image_eval_size), interpolation=TF.InterpolationMode.BICUBIC), T.ToTensor(), T.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)) ])(pil_image).unsqueeze(0).to(device) with torch.no_grad(): caption = blip_model.generate(gpu_image, sample=False, num_beams=3, max_length=20, min_length=5) return caption[0] def inference(image): return generate_caption(image) inputs = [gr.inputs.Image(type='pil')] outputs = gr.outputs.Textbox(label="Output") title = "CLIP Interrogator" description = "First test of CLIP Interrogator on HuggingSpace" article = """
""" gr.Interface( inference, inputs, outputs, title=title, description=description, article=article, examples=[['example.jpg']] ).launch(enable_queue=True)