import gradio as gr from haystack.nodes import TransformersImageToText from haystack.nodes import PromptNode, PromptTemplate from haystack import Pipeline image_to_text = TransformersImageToText( model_name_or_path="nlpconnect/vit-gpt2-image-captioning", use_gpu=True, batch_size=16, progress_bar=True ) prompt_template = PromptTemplate(prompt=""" You will receive a describing text of a photo. Try to come up with a nice Instagram caption that has a phrase rhyming with the text Describing text:{documents}; Caption: """) # prompt_node = PromptNode(model_name_or_path="gpt-3.5-turbo", api_key=api_key, default_prompt_template=pt) prompt_node = PromptNode(model_name_or_path="google/flan-t5-large", default_prompt_template=prompt_template) # prompt_node = PromptNode(model_name_or_path="tiiuae/falcon-7b-instruct", api_key=hf_api_key, default_prompt_template=pt, model_kwargs={"trust_remote_code":True}) captioning_pipeline = Pipeline() captioning_pipeline.add_node(component=image_to_text, name="image_to_text", inputs=["File"]) captioning_pipeline.add_node(component=prompt_node, name="prompt_node", inputs=["image_to_text"]) def generate_caption(image_file_paths): print(image_file_paths) # documents = image_to_text.generate_captions(image_file_paths=[image_file_paths]) # print(documents[0].content) caption = captioning_pipeline.run(file_paths=image_file_paths) return caption["results"][0] with gr.Blocks(theme="soft") as demo: image = gr.Image(type="filepath") submit_btn = gr.Button("✨ Captionate ✨") caption = gr.Textbox(label="Caption") submit_btn.click(fn=generate_caption, inputs=[image], outputs=[caption]) if __name__ == "__main__": demo.launch()