|
from transformers import GTP2Tokenizer, TrainingArguments, Trainer, GPT2LMHeadModel |
|
from datasets import load_dataset |
|
|
|
dataset = load_dataset("sst2") |
|
|
|
for row in dataset['train']: |
|
print(row) |
|
|
|
for i, row in enumerate(dataset): |
|
prep_text = f"<|startoftext|> {rwo['sentence']}<|pad|>Sentiment: {rwo['label']}<|endoftext|>" |
|
encodings_dict = tokenizer(prep_txt) |
|
|
|
tokenizer = GTP2Tokenizer.from_pretrained('gpt2', bos_token='<|startoftext|>', eos_token='<|endoftext|>', pad_token='<|pad|>') |
|
model = GPT2LMHeadModel.from_pretrained('gpt2') |
|
|
|
train_args = TrainingArguments(output_dir='results', num_train_epochs = 1, warmup_steps =100, weight_decay = 0.01) |
|
|
|
Trainer(model='gpt2', args=train_args,train_dataset=train_dataset) |
|
|
|
model.eval() |
|
|
|
prompt = f'<|startoftext|>Tweet: {text}\nSentiment:' |
|
tokenizer_text = tokenizer(prompt, return_tensors="pt").input_ids |
|
output = model.generate(tokenized_text) |
|
predicted_text = tokenizer.decode(output) |
|
|
|
|
|
|
|
|
|
|