Spaces:
Runtime error
Runtime error
from typing import Any, Dict, Optional | |
from dataclasses import asdict, dataclass, field | |
class GeneratingArguments: | |
r""" | |
Arguments pertaining to specify the decoding parameters. | |
""" | |
do_sample: Optional[bool] = field( | |
default=True, | |
metadata={"help": "Whether or not to use sampling, use greedy decoding otherwise."} | |
) | |
temperature: Optional[float] = field( | |
default=0.95, | |
metadata={"help": "The value used to modulate the next token probabilities."} | |
) | |
top_p: Optional[float] = field( | |
default=0.7, | |
metadata={"help": "The smallest set of most probable tokens with probabilities that add up to top_p or higher are kept."} | |
) | |
top_k: Optional[int] = field( | |
default=50, | |
metadata={"help": "The number of highest probability vocabulary tokens to keep for top-k filtering."} | |
) | |
num_beams: Optional[int] = field( | |
default=1, | |
metadata={"help": "Number of beams for beam search. 1 means no beam search."} | |
) | |
max_length: Optional[int] = field( | |
default=None, | |
metadata={"help": "The maximum length the generated tokens can have. It can be overridden by max_new_tokens."} | |
) | |
max_new_tokens: Optional[int] = field( | |
default=512, | |
metadata={"help": "The maximum numbers of tokens to generate, ignoring the number of tokens in the prompt."} | |
) | |
repetition_penalty: Optional[float] = field( | |
default=1.0, | |
metadata={"help": "The parameter for repetition penalty. 1.0 means no penalty."} | |
) | |
length_penalty: Optional[float] = field( | |
default=1.0, | |
metadata={"help": "Exponential penalty to the length that is used with beam-based generation."} | |
) | |
def to_dict(self) -> Dict[str, Any]: | |
args = asdict(self) | |
if args.get("max_new_tokens", None): | |
args.pop("max_length", None) | |
return args | |