from typing import Any, Dict, Optional from dataclasses import asdict, dataclass, field @dataclass class GeneratingArguments: r""" Arguments pertaining to specify the decoding parameters. """ do_sample: Optional[bool] = field( default=True, metadata={"help": "Whether or not to use sampling, use greedy decoding otherwise."} ) temperature: Optional[float] = field( default=0.95, metadata={"help": "The value used to modulate the next token probabilities."} ) top_p: Optional[float] = field( default=0.7, metadata={"help": "The smallest set of most probable tokens with probabilities that add up to top_p or higher are kept."} ) top_k: Optional[int] = field( default=50, metadata={"help": "The number of highest probability vocabulary tokens to keep for top-k filtering."} ) num_beams: Optional[int] = field( default=1, metadata={"help": "Number of beams for beam search. 1 means no beam search."} ) max_length: Optional[int] = field( default=None, metadata={"help": "The maximum length the generated tokens can have. It can be overridden by max_new_tokens."} ) max_new_tokens: Optional[int] = field( default=512, metadata={"help": "The maximum numbers of tokens to generate, ignoring the number of tokens in the prompt."} ) repetition_penalty: Optional[float] = field( default=1.0, metadata={"help": "The parameter for repetition penalty. 1.0 means no penalty."} ) length_penalty: Optional[float] = field( default=1.0, metadata={"help": "Exponential penalty to the length that is used with beam-based generation."} ) def to_dict(self) -> Dict[str, Any]: args = asdict(self) if args.get("max_new_tokens", None): args.pop("max_length", None) return args