import json from typing import Literal, Optional from dataclasses import asdict, dataclass, field @dataclass class FinetuningArguments: r""" Arguments pertaining to which techniques we are going to fine-tuning with. """ finetuning_type: Optional[Literal["lora", "freeze", "full", "none"]] = field( default="lora", metadata={"help": "Which fine-tuning method to use."} ) num_hidden_layers: Optional[int] = field( default=32, metadata={"help": "Number of decoder blocks in the model for partial-parameter (freeze) fine-tuning. \ LLaMA choices: [\"32\", \"40\", \"60\", \"80\"], \ LLaMA-2 choices: [\"32\", \"40\", \"80\"], \ BLOOM choices: [\"24\", \"30\", \"70\"], \ Falcon choices: [\"32\", \"60\"], \ Baichuan choices: [\"32\", \"40\"] \ Qwen choices: [\"32\"], \ XVERSE choices: [\"40\"], \ ChatGLM2 choices: [\"28\"]"} ) num_layer_trainable: Optional[int] = field( default=3, metadata={"help": "Number of trainable layers for partial-parameter (freeze) fine-tuning."} ) name_module_trainable: Optional[Literal["mlp", "self_attn", "self_attention"]] = field( default="mlp", metadata={"help": "Name of trainable modules for partial-parameter (freeze) fine-tuning. \ LLaMA choices: [\"mlp\", \"self_attn\"], \ BLOOM & Falcon & ChatGLM2 choices: [\"mlp\", \"self_attention\"], \ Baichuan choices: [\"mlp\", \"self_attn\"], \ Qwen choices: [\"mlp\", \"attn\"], \ LLaMA-2, InternLM, XVERSE choices: the same as LLaMA."} ) lora_rank: Optional[int] = field( default=8, metadata={"help": "The intrinsic dimension for LoRA fine-tuning."} ) lora_alpha: Optional[float] = field( default=32.0, metadata={"help": "The scale factor for LoRA fine-tuning (similar with the learning rate)."} ) lora_dropout: Optional[float] = field( default=0.1, metadata={"help": "Dropout rate for the LoRA fine-tuning."} ) lora_target: Optional[str] = field( default=None, metadata={"help": "Name(s) of target modules to apply LoRA. Use commas to separate multiple modules. \ LLaMA choices: [\"q_proj\", \"k_proj\", \"v_proj\", \"o_proj\", \"gate_proj\", \"up_proj\", \"down_proj\"], \ BLOOM & Falcon & ChatGLM2 choices: [\"query_key_value\", \"self_attention.dense\", \"mlp.dense\"], \ Baichuan choices: [\"W_pack\", \"o_proj\", \"gate_proj\", \"up_proj\", \"down_proj\"], \ Qwen choices: [\"c_attn\", \"attn.c_proj\", \"w1\", \"w2\", \"mlp.c_proj\"], \ LLaMA-2, InternLM, XVERSE choices: the same as LLaMA."} ) resume_lora_training: Optional[bool] = field( default=True, metadata={"help": "Whether to resume training from the last LoRA weights or create new weights after merging them."} ) ppo_score_norm: Optional[bool] = field( default=False, metadata={"help": "Use score normalization in PPO Training."} ) dpo_beta: Optional[float] = field( default=0.1, metadata={"help": "The beta parameter for the DPO loss."} ) def __post_init__(self): if isinstance(self.lora_target, str): # support custom target modules/layers of LoRA self.lora_target = [target.strip() for target in self.lora_target.split(",")] if self.num_layer_trainable > 0: # fine-tuning the last n layers if num_layer_trainable > 0 trainable_layer_ids = [self.num_hidden_layers - k - 1 for k in range(self.num_layer_trainable)] else: # fine-tuning the first n layers if num_layer_trainable < 0 trainable_layer_ids = [k for k in range(-self.num_layer_trainable)] self.trainable_layers = ["{:d}.{}".format(idx, self.name_module_trainable) for idx in trainable_layer_ids] assert self.finetuning_type in ["lora", "freeze", "full", "none"], "Invalid fine-tuning method." def save_to_json(self, json_path: str): r"""Saves the content of this instance in JSON format inside `json_path`.""" json_string = json.dumps(asdict(self), indent=2, sort_keys=True) + "\n" with open(json_path, "w", encoding="utf-8") as f: f.write(json_string) @classmethod def load_from_json(cls, json_path: str): r"""Creates an instance from the content of `json_path`.""" with open(json_path, "r", encoding="utf-8") as f: text = f.read() return cls(**json.loads(text))