blazingbunny's picture
Update app.py
f1e7200 verified
raw
history blame
2.39 kB
import streamlit as st
from transformers import pipeline
import re
def custom_sentence_splitter(text):
# Simple regex to split sentences by periods, exclamations, or question marks followed by a space
return re.split(r'(?<=[.!?]) +', text)
st.title('Hugging Face BERT Summarizer')
# List of models
models = ["sshleifer/distilbart-cnn-12-6", "facebook/bart-large-cnn", "t5-base", "t5-large", "google/pegasus-newsroom"]
# Dropdown model selector
model = st.sidebar.selectbox("Choose a model", models)
uploaded_file = st.file_uploader("Choose a .txt file", type="txt")
# Add text input for keywords
keywords = st.text_input("Enter keywords (comma-separated)")
# Add slider to the sidebar for the scale value
scale_percentage = st.sidebar.slider('Scale %', min_value=1, max_value=100, value=50)
# Add slider for the chunk size
chunk_size = st.sidebar.slider('Chunk size (words)', min_value=100, max_value=1000, value=500)
if uploaded_file is not None and keywords:
user_input = uploaded_file.read().decode('utf-8')
keywords = [keyword.strip() for keyword in keywords.split(",")]
# Split text into sentences using the custom function
sentences = custom_sentence_splitter(user_input)
# Filter sentences based on keywords
filtered_sentences = [sentence for sentence in sentences if any(keyword.lower() in sentence.lower() for keyword in keywords)]
filtered_text = ' '.join(filtered_sentences)
if st.button('Summarize'):
summarizer = pipeline('summarization', model=model)
summarized_text = ""
# Split filtered text into chunks by words
words = filtered_text.split()
chunks = [' '.join(words[i:i+chunk_size]) for i in range(0, len(words), chunk_size)]
# Summarize each chunk
for chunk in chunks:
chunk_length = len(chunk.split())
min_length_percentage = max(scale_percentage - 10, 1)
max_length_percentage = min(scale_percentage + 10, 100)
min_length = max(int(chunk_length * min_length_percentage / 100), 1)
max_length = int(chunk_length * max_length_percentage / 100)
summarized = summarizer(chunk, max_length=max_length, min_length=min_length, do_sample=False)
summarized_text += summarized[0]['summary_text'] + " "
st.text_area('Summarized Text', summarized_text, height=200)