import gradio as gr from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM import os AUTH_TOKEN = os.environ.get("TOKEN") model = AutoModelForSeq2SeqLM.from_pretrained('bowphs/ancient-t5-translation', use_auth_token=AUTH_TOKEN) tokenizer = AutoTokenizer.from_pretrained('bowphs/ancient-t5-translation', use_auth_token=AUTH_TOKEN) generator = pipeline('text2text-generation', model=model, tokenizer=tokenizer) def generate(text, generation_args): arguments = {} if generation_args: pairs = generation_args.split(",") for pair in pairs: key, value = pair.strip().split('=') arguments[key] = eval(value) result = generator(text, max_length=30, num_return_sequences=1, **arguments) return result[0]["generated_text"] examples = [ ["translate english to latin: and he took the sword and killed the man."], ["translate english to latin: and he took the sword and killed the man."], ] demo = gr.Interface( fn=generate, inputs=[gr.components.Textbox(value="translate greek to english: ὁ ἄνθρωπος τὸν οἶνον πίνειν ἐθέλων τὸν κρατῆρα ἔλαβεν.", label="Input Text"), gr.components.Textbox(value="do_sample=False, num_beams=3", label="Generation Parameters")], outputs=gr.components.Textbox(value="the man took the bowl with the intention of drinking wine.", label="Generated Text"), examples=examples ) demo.launch()