Spaces:
Sleeping
Sleeping
File size: 12,114 Bytes
3bc4816 9fa77c4 3bc4816 c3e5361 3bc4816 c3e5361 3bc4816 9fa77c4 3bc4816 9fa77c4 3bc4816 9fa77c4 3bc4816 9fa77c4 3bc4816 9fa77c4 3bc4816 9fa77c4 3bc4816 9fa77c4 3bc4816 9fa77c4 54234b7 9fa77c4 54234b7 9fa77c4 3bc4816 54234b7 3bc4816 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 |
from typing import Tuple, List, Union, Dict, Mapping
import base64
import os
from bs4 import BeautifulSoup
import gradio as gr
from spacy import displacy
from transformers import (
AutoTokenizer,
AutoModelForTokenClassification,
BatchEncoding,
AutoModelForSeq2SeqLM,
DataCollatorForTokenClassification,
)
import torch
from utils import get_dependencies, preprocess_text
from models import (
DependencyRobertaForTokenClassification,
LabelRobertaForTokenClassification,
)
DEFAULT_TEXT = "τίω δέ μιν ἐν καρὸς αἴσῃ."
BUTTON_CSS = "float: right; --tw-border-opacity: 1; border-color: rgb(229 231 235 / var(--tw-border-opacity)); --tw-gradient-from: rgb(243 244 246 / 0.7); --tw-gradient-stops: var(--tw-gradient-from), var(--tw-gradient-to, rgb(243 244 246 / 0)); --tw-gradient-to: rgb(229 231 235 / 0.8); --tw-text-opacity: 1; color: rgb(55 65 81 / var(--tw-text-opacity)); border-width: 1px; --tw-bg-opacity: 1; background-color: rgb(255 255 255 / var(--tw-bg-opacity)); background-image: linear-gradient(to bottom right, var(--tw-gradient-stops)); display: inline-flex; flex: 1 1 0%; align-items: center; justify-content: center; --tw-shadow: 0 1px 2px 0 rgb(0 0 0 / 0.05); --tw-shadow-colored: 0 1px 2px 0 var(--tw-shadow-color); box-shadow: var(--tw-ring-offset-shadow, 0 0 #0000), var(--tw-ring-shadow, 0 0 #0000), var(--tw-shadow); -webkit-appearance: button; border-radius: 0.5rem; padding-top: 0.5rem; padding-bottom: 0.5rem; padding-left: 1rem; padding-right: 1rem; font-size: 1rem; line-height: 1.5rem; font-weight: 600;"
DEFAULT_COLOR = "white"
MODEL_PATHS = {
"POS": "bowphs/testid",
"LEMMATIZATION": "bowphs/lemmatization-demo",
"DEPENDENCY": "bowphs/depenBERTa_perseus",
"LABELS": "bowphs/depenBERTa_labler_perseus",
}
MODEL_MAX_LENGTH = 512
AUTH_TOKEN = os.environ.get("TOKEN") or True
# PoS
pos_tokenizer = AutoTokenizer.from_pretrained(
MODEL_PATHS["POS"], model_max_length=MODEL_MAX_LENGTH, use_auth_token=AUTH_TOKEN, revision="11437fc1ba7ecd7df9d292d5f91f36fe55cdae3d",
)
pos_model = AutoModelForTokenClassification.from_pretrained(
MODEL_PATHS["POS"], use_auth_token=AUTH_TOKEN, revision="11437fc1ba7ecd7df9d292d5f91f36fe55cdae3d",
)
# Lemmatization
lemmatizer_tokenizer = AutoTokenizer.from_pretrained(
MODEL_PATHS["LEMMATIZATION"],
model_max_length=MODEL_MAX_LENGTH,
use_auth_token=AUTH_TOKEN,
)
lemmatizer_model = AutoModelForSeq2SeqLM.from_pretrained(
MODEL_PATHS["LEMMATIZATION"], use_auth_token=AUTH_TOKEN
)
# Dependency Parsing
dependency_tokenizer = AutoTokenizer.from_pretrained(
MODEL_PATHS["DEPENDENCY"],
model_max_length=MODEL_MAX_LENGTH,
use_auth_token=AUTH_TOKEN,
)
arcs_model = DependencyRobertaForTokenClassification.from_pretrained(
MODEL_PATHS["DEPENDENCY"], use_auth_token=AUTH_TOKEN
)
labels_model = LabelRobertaForTokenClassification.from_pretrained(
MODEL_PATHS["LABELS"], use_auth_token=AUTH_TOKEN
)
data_collator = DataCollatorForTokenClassification(dependency_tokenizer)
def is_valid_selection(col_arcs, col_labels) -> bool:
if not col_arcs and col_labels:
return False
return True
def get_pos_predictions(inputs) -> torch.Tensor:
"""Get part of speech predictions."""
return pos_model(inputs["input_ids"]).logits.argmax(-1) # type: ignore
def execute_parse(
text_input: str,
col_pos: bool,
col_arcs: bool,
col_labels: bool,
col_lemmata: bool,
compact: bool,
bg: str,
text: str,
) -> Tuple[str, str]:
if is_valid_selection(col_arcs, col_labels):
return parse(
text_input, col_pos, col_arcs, col_labels, col_lemmata, compact, bg, text
)
return "Please check 'Dependency Arcs' before checking 'Dependency Labels'", ""
def lemmatize(tokens: List[str]) -> List[str]:
def construct_task(word_idx: int) -> str:
return f"lemmatize: {' '.join(tokens[:word_idx])} <extra_id_0> {tokens[word_idx]} <extra_id_1> {' '.join(list(tokens[word_idx]))} <extra_id_2> {' '.join(tokens[word_idx+1:])}"
predictions = [
lemmatizer_tokenizer.decode(
lemmatizer_model.generate(
lemmatizer_tokenizer(construct_task(word_idx), return_tensors="pt")[
"input_ids"
],
max_length=20,
num_beams=5,
num_return_sequences=1,
early_stopping=True,
)[0],
skip_special_tokens=True,
)
for word_idx in range(len(tokens))
]
return predictions
def add_lemma_visualization(soup, lemmata: List[str], col_arcs: bool) -> str:
for token, lemma in zip(soup.find_all(class_="displacy-token")[col_arcs:], lemmata):
pos_tag = token.find(class_="displacy-tag")
lemma_tag = soup.new_tag(
"tspan",
class_="displacy-lemma",
dy="2em",
fill="currentColor",
x=pos_tag.attrs["x"],
)
lemma_tag.string = lemma
pos_tag.insert_after(lemma_tag)
return str(soup)
def download_svg(svg):
encode = base64.b64encode(bytes(svg, "utf-8"))
img = "data:image/svg+xml;base64," + str(encode)[2:-1]
html = f'<a download="displacy.svg" href="{img}" style="{BUTTON_CSS}">Download as SVG</a>'
return html
def prepare_doc(
tokens: List[str], col_pos: bool, pos_outputs: torch.Tensor, inputs: BatchEncoding,
) -> Dict[str, List[Dict[str, str]]]:
doc: Dict[str, List[Dict[str, str]]] = {
"words": [], #[{"text": "ROOT", "tag": ""}],
"arcs": [],
}
word_ids = inputs.word_ids()
previous_word_idx = None
for idx, word_idx in enumerate(word_ids):
if word_idx != previous_word_idx and word_idx is not None:
tag_repr = (
pos_model.config.id2label[pos_outputs[0][idx].item()] if col_pos else ""
)
doc["words"].append({"text": tokens[word_idx], "tag": tag_repr})
previous_word_idx = word_idx
return doc
def parse(
text_input: str,
col_pos: bool,
col_arcs: bool,
col_labels: bool,
col_lemmata: bool,
compact: bool,
bg: str,
text: str,
) -> Tuple[str, str]:
tokens = preprocess_text(text_input)
inputs = pos_tokenizer(
tokens,
return_tensors="pt",
truncation=True,
padding=True,
is_split_into_words=True,
)
pos_outputs = get_pos_predictions(inputs)
doc = prepare_doc(tokens, col_pos, pos_outputs, inputs)
if col_arcs:
doc["words"].insert(0, {"text": "ROOT", "tag": ""})
doc["arcs"] = get_dependencies(
arcs_model,
labels_model,
dependency_tokenizer,
data_collator,
col_labels,
tokens,
)["arcs"]
options = {"compact": compact, "bg": bg, "color": text}
svg = displacy.render(doc, manual=True, options=options) #style="dep",
if col_lemmata:
soup = BeautifulSoup(svg, "lxml-xml")
lemmata = lemmatize(tokens)
svg = add_lemma_visualization(soup, lemmata, col_arcs)
download_link = download_svg(svg)
return svg, download_link
def setup_parser_ui():
demo = gr.Blocks(css="scrollbar.css")
with demo:
with gr.Row():
with gr.Row():
with gr.Column():
gr.Markdown("# Athena's Lens")
gr.Markdown(
"### From Ἀlkaios to Ὠrigen: A Modern Lens on Timeless Texts"
)
with gr.Row():
with gr.Column():
gr.Markdown(" ## Enter some text")
with gr.Row():
with gr.Column(scale=0.5):
text_input = gr.Textbox(
value=DEFAULT_TEXT, interactive=True, label="Input Text"
)
with gr.Row():
with gr.Column(scale=0.25):
button = gr.Button("Update", variant="primary")#.style(
#full_width=False
#)
with gr.Row():
with gr.Column():
with gr.Row():
with gr.Column():
gr.Markdown("## Parser")
with gr.Row():
with gr.Column():
col_pos = gr.Checkbox(label="PoS Labels", value=True)
col_arcs = gr.Checkbox(label="Dependency Arcs", value=False)
col_labels = gr.Checkbox(label="Dependency Labels", value=False)
col_lemmata = gr.Checkbox(label="Lemmata", value=False)
compact = gr.Checkbox(label="Compact", value=False)
with gr.Column():
bg = gr.Textbox(label="Background Color", value=DEFAULT_COLOR)
with gr.Column():
text = gr.Textbox(label="Text Color", value="black")
with gr.Row():
dep_output = gr.HTML(
value=parse(
DEFAULT_TEXT,
True,
False,
False,
False,
False,
DEFAULT_COLOR,
"black",
)[0],
elem_classes=["output-html"]
)
with gr.Row():
with gr.Column(scale=0.25):
dep_button = gr.Button(
"Update Parser", variant="primary"
)#.style(full_width=False)
with gr.Column():
dep_download_button = gr.HTML(
value=download_svg(dep_output.value)
)
with gr.Row():
with gr.Column():
with gr.Row():
with gr.Column():
gr.Markdown("## Contact")
gr.Markdown(
"If you have any questions, suggestions, comments, or problems, feel free to [reach out](mailto:riemenschneider@cl.uni-heidelberg.de)."
)
gr.Markdown("## Citation")
gr.Markdown(
"This space uses models from [this](https://aclanthology.org/2023.acl-long.846.pdf) paper."
)
gr.Markdown(
"""```bibtex
@incollection{riemenschneider-frank-2023-exploring,
title = "Exploring Large Language Models for Classical Philology",
author = "Riemenschneider, Frederick and Frank, Anette",
booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.acl-long.846",
doi = "10.18653/v1/2023.acl-long.846",
pages = "15181--15199",
}
```
"""
)
button.click(
execute_parse,
inputs=[
text_input,
col_pos,
col_arcs,
col_labels,
col_lemmata,
compact,
bg,
text,
],
outputs=[dep_output, dep_download_button],
)
dep_button.click(
execute_parse,
inputs=[
text_input,
col_pos,
col_arcs,
col_labels,
col_lemmata,
compact,
bg,
text,
],
outputs=[dep_output, dep_download_button],
)
return demo
def main():
demo = setup_parser_ui()
demo.launch()
if __name__ == "__main__":
main()
|