athenas-lens / app.py
bowphs's picture
Update app.py
7b674b2 verified
from typing import Tuple, List, Union, Dict, Mapping
import base64
import os
from bs4 import BeautifulSoup
import gradio as gr
from spacy import displacy
from transformers import (
AutoTokenizer,
AutoModelForTokenClassification,
BatchEncoding,
AutoModelForSeq2SeqLM,
DataCollatorForTokenClassification,
)
import torch
from utils import get_dependencies, preprocess_text
from models import (
DependencyRobertaForTokenClassification,
LabelRobertaForTokenClassification,
)
DEFAULT_TEXT = "τίω δέ μιν ἐν καρὸς αἴσῃ."
BUTTON_CSS = "float: right; --tw-border-opacity: 1; border-color: rgb(229 231 235 / var(--tw-border-opacity)); --tw-gradient-from: rgb(243 244 246 / 0.7); --tw-gradient-stops: var(--tw-gradient-from), var(--tw-gradient-to, rgb(243 244 246 / 0)); --tw-gradient-to: rgb(229 231 235 / 0.8); --tw-text-opacity: 1; color: rgb(55 65 81 / var(--tw-text-opacity)); border-width: 1px; --tw-bg-opacity: 1; background-color: rgb(255 255 255 / var(--tw-bg-opacity)); background-image: linear-gradient(to bottom right, var(--tw-gradient-stops)); display: inline-flex; flex: 1 1 0%; align-items: center; justify-content: center; --tw-shadow: 0 1px 2px 0 rgb(0 0 0 / 0.05); --tw-shadow-colored: 0 1px 2px 0 var(--tw-shadow-color); box-shadow: var(--tw-ring-offset-shadow, 0 0 #0000), var(--tw-ring-shadow, 0 0 #0000), var(--tw-shadow); -webkit-appearance: button; border-radius: 0.5rem; padding-top: 0.5rem; padding-bottom: 0.5rem; padding-left: 1rem; padding-right: 1rem; font-size: 1rem; line-height: 1.5rem; font-weight: 600;"
DEFAULT_COLOR = "white"
MODEL_PATHS = {
"POS": "bowphs/testid",
"LEMMATIZATION": "bowphs/lemmatization-demo",
"DEPENDENCY": "bowphs/depenBERTa_perseus",
"LABELS": "bowphs/depenBERTa_labler_perseus",
}
MODEL_MAX_LENGTH = 512
AUTH_TOKEN = os.environ.get("TOKEN") or True
# PoS
pos_tokenizer = AutoTokenizer.from_pretrained(
MODEL_PATHS["DEPENDENCY"],
model_max_length=MODEL_MAX_LENGTH,
use_auth_token=AUTH_TOKEN,
)
pos_model = AutoModelForTokenClassification.from_pretrained(
MODEL_PATHS["POS"], use_auth_token=AUTH_TOKEN, revision="11437fc1ba7ecd7df9d292d5f91f36fe55cdae3d",
)
# Lemmatization
lemmatizer_tokenizer = AutoTokenizer.from_pretrained(
MODEL_PATHS["LEMMATIZATION"],
model_max_length=MODEL_MAX_LENGTH,
use_auth_token=AUTH_TOKEN,
)
lemmatizer_model = AutoModelForSeq2SeqLM.from_pretrained(
MODEL_PATHS["LEMMATIZATION"], use_auth_token=AUTH_TOKEN
)
# Dependency Parsing
dependency_tokenizer = AutoTokenizer.from_pretrained(
MODEL_PATHS["DEPENDENCY"],
model_max_length=MODEL_MAX_LENGTH,
use_auth_token=AUTH_TOKEN,
)
arcs_model = DependencyRobertaForTokenClassification.from_pretrained(
MODEL_PATHS["DEPENDENCY"], use_auth_token=AUTH_TOKEN
)
labels_model = LabelRobertaForTokenClassification.from_pretrained(
MODEL_PATHS["LABELS"], use_auth_token=AUTH_TOKEN
)
data_collator = DataCollatorForTokenClassification(dependency_tokenizer)
def is_valid_selection(col_arcs, col_labels) -> bool:
if not col_arcs and col_labels:
return False
return True
def get_pos_predictions(inputs) -> torch.Tensor:
"""Get part of speech predictions."""
return pos_model(inputs["input_ids"]).logits.argmax(-1) # type: ignore
def execute_parse(
text_input: str,
col_pos: bool,
col_arcs: bool,
col_labels: bool,
col_lemmata: bool,
compact: bool,
bg: str,
text: str,
) -> Tuple[str, str]:
if is_valid_selection(col_arcs, col_labels):
return parse(
text_input, col_pos, col_arcs, col_labels, col_lemmata, compact, bg, text
)
return "Please check 'Dependency Arcs' before checking 'Dependency Labels'", ""
def lemmatize(tokens: List[str]) -> List[str]:
def construct_task(word_idx: int) -> str:
return f"lemmatize: {' '.join(tokens[:word_idx])} <extra_id_0> {tokens[word_idx]} <extra_id_1> {' '.join(list(tokens[word_idx]))} <extra_id_2> {' '.join(tokens[word_idx+1:])}"
predictions = [
lemmatizer_tokenizer.decode(
lemmatizer_model.generate(
lemmatizer_tokenizer(construct_task(word_idx), return_tensors="pt")[
"input_ids"
],
max_length=20,
num_beams=5,
num_return_sequences=1,
early_stopping=True,
)[0],
skip_special_tokens=True,
)
for word_idx in range(len(tokens))
]
return predictions
def add_lemma_visualization(soup, lemmata: List[str], col_arcs: bool) -> str:
for token, lemma in zip(soup.find_all(class_="displacy-token")[col_arcs:], lemmata):
pos_tag = token.find(class_="displacy-tag")
lemma_tag = soup.new_tag(
"tspan",
class_="displacy-lemma",
dy="2em",
fill="currentColor",
x=pos_tag.attrs["x"],
)
lemma_tag.string = lemma
pos_tag.insert_after(lemma_tag)
return str(soup)
def download_svg(svg):
encode = base64.b64encode(bytes(svg, "utf-8"))
img = "data:image/svg+xml;base64," + str(encode)[2:-1]
html = f'<a download="displacy.svg" href="{img}" style="{BUTTON_CSS}">Download as SVG</a>'
return html
def prepare_doc(
tokens: List[str], col_pos: bool, pos_outputs: torch.Tensor, inputs: BatchEncoding,
) -> Dict[str, List[Dict[str, str]]]:
doc: Dict[str, List[Dict[str, str]]] = {
"words": [], #[{"text": "ROOT", "tag": ""}],
"arcs": [],
}
word_ids = inputs.word_ids()
previous_word_idx = None
for idx, word_idx in enumerate(word_ids):
if word_idx != previous_word_idx and word_idx is not None:
tag_repr = (
pos_model.config.id2label[pos_outputs[0][idx].item()] if col_pos else ""
)
doc["words"].append({"text": tokens[word_idx], "tag": tag_repr})
previous_word_idx = word_idx
return doc
def parse(
text_input: str,
col_pos: bool,
col_arcs: bool,
col_labels: bool,
col_lemmata: bool,
compact: bool,
bg: str,
text: str,
) -> Tuple[str, str]:
tokens = preprocess_text(text_input)
inputs = pos_tokenizer(
tokens,
return_tensors="pt",
truncation=True,
padding=True,
is_split_into_words=True,
)
pos_outputs = get_pos_predictions(inputs)
doc = prepare_doc(tokens, col_pos, pos_outputs, inputs)
if col_arcs:
doc["words"].insert(0, {"text": "ROOT", "tag": ""})
doc["arcs"] = get_dependencies(
arcs_model,
labels_model,
dependency_tokenizer,
data_collator,
col_labels,
tokens,
)["arcs"]
options = {"compact": compact, "bg": bg, "color": text}
svg = displacy.render(doc, manual=True, options=options) #style="dep",
if col_lemmata:
soup = BeautifulSoup(svg, "lxml-xml")
lemmata = lemmatize(tokens)
svg = add_lemma_visualization(soup, lemmata, col_arcs)
download_link = download_svg(svg)
return svg, download_link
def setup_parser_ui():
demo = gr.Blocks(css="scrollbar.css")
with demo:
with gr.Row():
with gr.Row():
with gr.Column():
gr.Markdown("# Athena's Lens")
gr.Markdown(
"### From Ἀlkaios to Ὠrigen: A Modern Lens on Timeless Texts"
)
with gr.Row():
with gr.Column():
gr.Markdown(" ## Enter some text")
with gr.Row():
with gr.Column(scale=0.5):
text_input = gr.Textbox(
value=DEFAULT_TEXT, interactive=True, label="Input Text"
)
with gr.Row():
with gr.Column(scale=0.25):
button = gr.Button("Update", variant="primary")#.style(
#full_width=False
#)
with gr.Row():
with gr.Column():
with gr.Row():
with gr.Column():
gr.Markdown("## Parser")
with gr.Row():
with gr.Column():
col_pos = gr.Checkbox(label="PoS Labels", value=True)
col_arcs = gr.Checkbox(label="Dependency Arcs", value=False)
col_labels = gr.Checkbox(label="Dependency Labels", value=False)
col_lemmata = gr.Checkbox(label="Lemmata", value=False)
compact = gr.Checkbox(label="Compact", value=False)
with gr.Column():
bg = gr.Textbox(label="Background Color", value=DEFAULT_COLOR)
with gr.Column():
text = gr.Textbox(label="Text Color", value="black")
with gr.Row():
dep_output = gr.HTML(
value=parse(
DEFAULT_TEXT,
True,
False,
False,
False,
False,
DEFAULT_COLOR,
"black",
)[0],
elem_classes=["output-html"]
)
with gr.Row():
with gr.Column(scale=0.25):
dep_button = gr.Button(
"Update Parser", variant="primary"
)#.style(full_width=False)
with gr.Column():
dep_download_button = gr.HTML(
value=download_svg(dep_output.value)
)
with gr.Row():
with gr.Column():
with gr.Row():
with gr.Column():
gr.Markdown("## Contact")
gr.Markdown(
"If you have any questions, suggestions, comments, or problems, feel free to [reach out](mailto:riemenschneider@cl.uni-heidelberg.de)."
)
gr.Markdown("## Citation")
gr.Markdown(
"This space uses models from [this](https://aclanthology.org/2023.acl-long.846.pdf) paper."
)
gr.Markdown(
"""```bibtex
@incollection{riemenschneider-frank-2023-exploring,
title = "Exploring Large Language Models for Classical Philology",
author = "Riemenschneider, Frederick and Frank, Anette",
booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.acl-long.846",
doi = "10.18653/v1/2023.acl-long.846",
pages = "15181--15199",
}
```
"""
)
button.click(
execute_parse,
inputs=[
text_input,
col_pos,
col_arcs,
col_labels,
col_lemmata,
compact,
bg,
text,
],
outputs=[dep_output, dep_download_button],
)
dep_button.click(
execute_parse,
inputs=[
text_input,
col_pos,
col_arcs,
col_labels,
col_lemmata,
compact,
bg,
text,
],
outputs=[dep_output, dep_download_button],
)
return demo
def main():
demo = setup_parser_ui()
demo.launch()
if __name__ == "__main__":
main()