import gradio as gr import torch import numpy as np import diffusers import os from PIL import Image hf_token = os.environ.get("HF_TOKEN") from diffusers import StableDiffusionXLInpaintPipeline, DDIMScheduler, UNet2DConditionModel from diffusers import ( AutoencoderKL, LCMScheduler, ) from pipeline_controlnet_sd_xl import StableDiffusionXLControlNetPipeline from controlnet import ControlNetModel, ControlNetConditioningEmbedding import torch import numpy as np from PIL import Image import requests import PIL from io import BytesIO from torchvision import transforms ratios_map = { 0.5:{"width":704,"height":1408}, 0.57:{"width":768,"height":1344}, 0.68:{"width":832,"height":1216}, 0.72:{"width":832,"height":1152}, 0.78:{"width":896,"height":1152}, 0.82:{"width":896,"height":1088}, 0.88:{"width":960,"height":1088}, 0.94:{"width":960,"height":1024}, 1.00:{"width":1024,"height":1024}, 1.13:{"width":1088,"height":960}, 1.21:{"width":1088,"height":896}, 1.29:{"width":1152,"height":896}, 1.38:{"width":1152,"height":832}, 1.46:{"width":1216,"height":832}, 1.67:{"width":1280,"height":768}, 1.75:{"width":1344,"height":768}, 2.00:{"width":1408,"height":704} } ratios = np.array(list(ratios_map.keys())) image_transforms = transforms.Compose( [ transforms.ToTensor(), ] ) default_negative_prompt = "Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers" def get_masked_image(image, image_mask, width, height): image_mask = image_mask # inpaint area is white image_mask = image_mask.resize((width, height)) # object to remove is white (1) image_mask_pil = image_mask image = np.array(image.convert("RGB")).astype(np.float32) / 255.0 image_mask = np.array(image_mask_pil.convert("L")).astype(np.float32) / 255.0 assert image.shape[0:1] == image_mask.shape[0:1], "image and image_mask must have the same image size" masked_image_to_present = image.copy() masked_image_to_present[image_mask > 0.5] = (0.5,0.5,0.5) # set as masked pixel image[image_mask > 0.5] = 0.5 # set as masked pixel - s.t. will be grey image = Image.fromarray((image * 255.0).astype(np.uint8)) masked_image_to_present = Image.fromarray((masked_image_to_present * 255.0).astype(np.uint8)) return image, image_mask_pil, masked_image_to_present def get_size(init_image): w,h=init_image.size curr_ratio = w/h ind = np.argmin(np.abs(curr_ratio-ratios)) ratio = ratios[ind] chosen_ratio = ratios_map[ratio] w,h = chosen_ratio['width'], chosen_ratio['height'] return w,h device = "cuda" if torch.cuda.is_available() else "cpu" # Load, init model controlnet = ControlNetModel().from_config('briaai/DEV-ControlNetInpaintingFast', torch_dtype=torch.float16) controlnet.controlnet_cond_embedding = ControlNetConditioningEmbedding( conditioning_embedding_channels=320, conditioning_channels = 5 ) # controlnet = ControlNetModel().from_pretrained("briaai/DEV-ControlNetInpaintingFast", torch_dtype=torch.float16) vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) pipe = StableDiffusionXLControlNetPipeline.from_pretrained("briaai/BRIA-2.3", controlnet=controlnet.to(dtype=torch.float16), torch_dtype=torch.float16, vae=vae) #force_zeros_for_empty_prompt=False, # vae=vae) pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) pipe.load_lora_weights("briaai/BRIA-2.3-FAST-LORA") pipe.fuse_lora() pipe = pipe.to(device) # pipe.enable_xformers_memory_efficient_attention() generator = torch.Generator(device='cuda').manual_seed(123456) vae = pipe.vae pipe.enable_model_cpu_offload() # pipe.force_zeros_for_empty_prompt = False # default_negative_prompt= "" #"Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers" def read_content(file_path: str) -> str: """read the content of target file """ with open(file_path, 'r', encoding='utf-8') as f: content = f.read() return content def predict(dict, prompt="", negative_prompt = default_negative_prompt, guidance_scale=1.2, steps=12, strength=1.0): if negative_prompt == "": negative_prompt = None init_image = dict["image"].convert("RGB").resize((1024, 1024)) mask = dict["mask"].convert("L").resize((1024, 1024)) width, height = get_size(init_image) init_image = init_image.resize((width, height)) mask = mask.resize((width, height)) # Resize to nearest ratio ? # mask = np.array(mask) # mask[mask>0]=255 # mask = Image.fromarray(mask) masked_image, image_mask, masked_image_to_present = get_masked_image(init_image, mask, width, height) masked_image_tensor = image_transforms(masked_image) masked_image_tensor = (masked_image_tensor - 0.5) / 0.5 masked_image_tensor = masked_image_tensor.unsqueeze(0).to(device="cuda") control_latents = vae.encode( masked_image_tensor[:, :3, :, :].to(vae.dtype) ).latent_dist.sample() control_latents = control_latents * vae.config.scaling_factor image_mask = np.array(image_mask)[:,:] mask_tensor = torch.tensor(image_mask, dtype=torch.float32)[None, ...] # binarize the mask mask_tensor = torch.where(mask_tensor > 128.0, 255.0, 0) mask_tensor = mask_tensor / 255.0 mask_tensor = mask_tensor.to(device="cuda") mask_resized = torch.nn.functional.interpolate(mask_tensor[None, ...], size=(control_latents.shape[2], control_latents.shape[3]), mode='nearest') # mask_resized = mask_resized.to(torch.float16) masked_image = torch.cat([control_latents, mask_resized], dim=1) output = pipe(prompt = prompt, width=width, height=height, negative_prompt=negative_prompt, image = masked_image, # control image V init_image = init_image, mask_image=mask_tensor, guidance_scale=guidance_scale, num_inference_steps=int(steps), # strength=strength, generator=generator, controlnet_conditioning_sale=1.0) # gen_img = pipe(negative_prompt=default_negative_prompt, prompt=prompt, # controlnet_conditioning_sale=1.0, # num_inference_steps=12, # height=height, width=width, # image = masked_image, # control image # init_image = init_image, # mask_image = mask_tensor, # guidance_scale = 1.2, # generator=generator).images[0] torch.cuda.empty_cache return output.images[0] #, gr.update(visible=True) css = ''' .gradio-container{max-width: 1100px !important} #image_upload{min-height:400px} #image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 400px} #mask_radio .gr-form{background:transparent; border: none} #word_mask{margin-top: .75em !important} #word_mask textarea:disabled{opacity: 0.3} .footer {margin-bottom: 45px;margin-top: 35px;text-align: center;border-bottom: 1px solid #e5e5e5} .footer>p {font-size: .8rem; display: inline-block; padding: 0 10px;transform: translateY(10px);background: white} .dark .footer {border-color: #303030} .dark .footer>p {background: #0b0f19} .acknowledgments h4{margin: 1.25em 0 .25em 0;font-weight: bold;font-size: 115%} #image_upload .touch-none{display: flex} @keyframes spin { from { transform: rotate(0deg); } to { transform: rotate(360deg); } } #share-btn-container {padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; max-width: 13rem; margin-left: auto;} div#share-btn-container > div {flex-direction: row;background: black;align-items: center} #share-btn-container:hover {background-color: #060606} #share-btn {all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.5rem !important; padding-bottom: 0.5rem !important;right:0;} #share-btn * {all: unset} #share-btn-container div:nth-child(-n+2){width: auto !important;min-height: 0px !important;} #share-btn-container .wrap {display: none !important} #share-btn-container.hidden {display: none!important} #prompt input{width: calc(100% - 160px);border-top-right-radius: 0px;border-bottom-right-radius: 0px;} #run_button{position:absolute;margin-top: 11px;right: 0;margin-right: 0.8em;border-bottom-left-radius: 0px; border-top-left-radius: 0px;} #prompt-container{margin-top:-18px;} #prompt-container .form{border-top-left-radius: 0;border-top-right-radius: 0} #image_upload{border-bottom-left-radius: 0px;border-bottom-right-radius: 0px} ''' image_blocks = gr.Blocks(css=css, elem_id="total-container") with image_blocks as demo: with gr.Column(elem_id="col-container"): gr.Markdown("## BRIA 2.2") gr.HTML('''

This is a demo for BRIA 2.2 text-to-image . BRIA 2.2 improve the generation of humans and illustrations compared to BRIA 2.2 while still trained on licensed data, and so provide full legal liability coverage for copyright and privacy infringement.

''') with gr.Row(): with gr.Column(): image = gr.Image(sources=['upload'], elem_id="image_upload", tool='sketch', type="pil", label="Upload", height=400) with gr.Row(elem_id="prompt-container", equal_height=True): with gr.Row(): prompt = gr.Textbox(placeholder="Your prompt (what you want in place of what is erased)", show_label=False, elem_id="prompt") btn = gr.Button("Inpaint!", elem_id="run_button") with gr.Accordion(label="Advanced Settings", open=False): with gr.Row(equal_height=True): guidance_scale = gr.Number(value=1.2, minimum=1.0, maximum=2, step=0.1, label="guidance_scale") steps = gr.Number(value=12, minimum=8, maximum=30, step=1, label="steps") strength = gr.Number(value=1, minimum=0.01, maximum=1.0, step=0.01, label="strength") negative_prompt = gr.Textbox(label="negative_prompt", value=default_negative_prompt, placeholder=default_negative_prompt, info="what you don't want to see in the image") with gr.Column(): image_out = gr.Image(label="Output", elem_id="output-img", height=400) btn.click(fn=predict, inputs=[image, prompt, negative_prompt, guidance_scale, steps, strength], outputs=[image_out], api_name='run') prompt.submit(fn=predict, inputs=[image, prompt, negative_prompt, guidance_scale, steps, strength], outputs=[image_out]) gr.HTML( """ """ ) image_blocks.queue(max_size=25,api_open=False).launch(show_api=False)