Spaces:
Runtime error
Runtime error
File size: 11,299 Bytes
884e760 6c74fa1 4422333 6c74fa1 6a1229b 6c74fa1 6a1229b 6c74fa1 6a1229b dc73fb6 6a1229b 6c74fa1 6a1229b 6c74fa1 8fef8eb 52ee6fe 6a1229b 971d02a 6a1229b 5453ac3 6c74fa1 1403e61 84c395b 6c74fa1 18fa5fa 6c74fa1 6a1229b 6c74fa1 6a1229b 6c74fa1 6a1229b 6c74fa1 6a1229b 4c6dcb6 971d02a 6a1229b 05f76db 6a1229b 52cddc8 6a1229b 0e896d4 6a1229b 5453ac3 6c74fa1 dcbf369 6c74fa1 dcbf369 6c74fa1 293de8d 6c74fa1 0d20806 293de8d 6c74fa1 2b46a79 6c74fa1 dcbf369 6c74fa1 971d02a 7797ad1 6c74fa1 84c395b 0b58f45 6c74fa1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
import gradio as gr
import torch
import numpy as np
import diffusers
import os
import spaces
from PIL import Image
hf_token = os.environ.get("HF_TOKEN")
from diffusers import StableDiffusionXLInpaintPipeline, DDIMScheduler, UNet2DConditionModel
from diffusers import (
AutoencoderKL,
LCMScheduler,
)
from pipeline_controlnet_sd_xl import StableDiffusionXLControlNetPipeline
from controlnet import ControlNetModel, ControlNetConditioningEmbedding
import torch
import numpy as np
from PIL import Image
import requests
import PIL
from io import BytesIO
from torchvision import transforms
ratios_map = {
0.5:{"width":704,"height":1408},
0.57:{"width":768,"height":1344},
0.68:{"width":832,"height":1216},
0.72:{"width":832,"height":1152},
0.78:{"width":896,"height":1152},
0.82:{"width":896,"height":1088},
0.88:{"width":960,"height":1088},
0.94:{"width":960,"height":1024},
1.00:{"width":1024,"height":1024},
1.13:{"width":1088,"height":960},
1.21:{"width":1088,"height":896},
1.29:{"width":1152,"height":896},
1.38:{"width":1152,"height":832},
1.46:{"width":1216,"height":832},
1.67:{"width":1280,"height":768},
1.75:{"width":1344,"height":768},
2.00:{"width":1408,"height":704}
}
ratios = np.array(list(ratios_map.keys()))
image_transforms = transforms.Compose(
[
transforms.ToTensor(),
]
)
default_negative_prompt = "Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers"
def get_masked_image(image, image_mask, width, height):
image_mask = image_mask # inpaint area is white
image_mask = image_mask.resize((width, height)) # object to remove is white (1)
image_mask_pil = image_mask
image = np.array(image.convert("RGB")).astype(np.float32) / 255.0
image_mask = np.array(image_mask_pil.convert("L")).astype(np.float32) / 255.0
assert image.shape[0:1] == image_mask.shape[0:1], "image and image_mask must have the same image size"
masked_image_to_present = image.copy()
masked_image_to_present[image_mask > 0.5] = (0.5,0.5,0.5) # set as masked pixel
image[image_mask > 0.5] = 0.5 # set as masked pixel - s.t. will be grey
image = Image.fromarray((image * 255.0).astype(np.uint8))
masked_image_to_present = Image.fromarray((masked_image_to_present * 255.0).astype(np.uint8))
return image, image_mask_pil, masked_image_to_present
def get_size(init_image):
w,h=init_image.size
curr_ratio = w/h
ind = np.argmin(np.abs(curr_ratio-ratios))
ratio = ratios[ind]
chosen_ratio = ratios_map[ratio]
w,h = chosen_ratio['width'], chosen_ratio['height']
return w,h
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load, init model
controlnet = ControlNetModel().from_pretrained("briaai/DEV-ControlNetInpaintingFast", torch_dtype=torch.float16)
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
pipe = StableDiffusionXLControlNetPipeline.from_pretrained("briaai/BRIA-2.3", controlnet=controlnet.to(dtype=torch.float16), torch_dtype=torch.float16, vae=vae) #force_zeros_for_empty_prompt=False, # vae=vae)
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
pipe.load_lora_weights("briaai/BRIA-2.3-FAST-LORA")
pipe.fuse_lora()
pipe = pipe.to(device)
# pipe.enable_xformers_memory_efficient_attention()
# generator = torch.Generator(device='cuda').manual_seed(123456)
vae = pipe.vae
pipe.enable_model_cpu_offload()
def read_content(file_path: str) -> str:
"""read the content of target file
"""
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
return content
@spaces.GPU(enable_queue=True)
def predict(dict, prompt="", negative_prompt = default_negative_prompt, guidance_scale=1.2, steps=12, seed=123456):
if negative_prompt == "":
negative_prompt = None
init_image = Image.fromarray(dict['background'][:, :, :3], 'RGB') #dict['background'].convert("RGB")#.resize((1024, 1024))
mask = Image.fromarray(dict['layers'][0][:,:,3], 'L') #dict['layers'].convert("RGB")#.resize((1024, 1024))
width, height = get_size(init_image)
init_image = init_image.resize((width, height))
mask = mask.resize((width, height))
masked_image, image_mask, masked_image_to_present = get_masked_image(init_image, mask, width, height)
masked_image_tensor = image_transforms(masked_image)
masked_image_tensor = (masked_image_tensor - 0.5) / 0.5
masked_image_tensor = masked_image_tensor.unsqueeze(0).to(device="cuda")
control_latents = vae.encode(
masked_image_tensor[:, :3, :, :].to(vae.dtype)
).latent_dist.sample()
control_latents = control_latents * vae.config.scaling_factor
image_mask = np.array(image_mask)[:,:]
mask_tensor = torch.tensor(image_mask, dtype=torch.float32)[None, ...]
# binarize the mask
mask_tensor = torch.where(mask_tensor > 128.0, 255.0, 0)
mask_tensor = mask_tensor / 255.0
mask_tensor = mask_tensor.to(device="cuda")
mask_resized = torch.nn.functional.interpolate(mask_tensor[None, ...], size=(control_latents.shape[2], control_latents.shape[3]), mode='nearest')
# mask_resized = mask_resized.to(torch.float16)
masked_image = torch.cat([control_latents, mask_resized], dim=1)
generator = torch.Generator(device='cuda').manual_seed(int(seed))
output = pipe(prompt = prompt,
width=width,
height=height,
negative_prompt=negative_prompt,
image = masked_image, # control image V
init_image = init_image,
mask_image = mask_tensor,
guidance_scale = guidance_scale,
num_inference_steps=int(steps),
# strength=strength,
generator=generator,
controlnet_conditioning_sale=1.0)
torch.cuda.empty_cache
return output.images[0] #, gr.update(visible=True)
css = '''
.gradio-container{max-width: 1100px !important}
#image_upload{min-height:400px}
#image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 400px}
#mask_radio .gr-form{background:transparent; border: none}
#word_mask{margin-top: .75em !important}
#word_mask textarea:disabled{opacity: 0.3}
.footer {margin-bottom: 45px;margin-top: 35px;text-align: center;border-bottom: 1px solid #e5e5e5}
.footer>p {font-size: .8rem; display: inline-block; padding: 0 10px;transform: translateY(10px);background: white}
.dark .footer {border-color: #303030}
.dark .footer>p {background: #0b0f19}
.acknowledgments h4{margin: 1.25em 0 .25em 0;font-weight: bold;font-size: 115%}
#image_upload .touch-none{display: flex}
@keyframes spin {
from {
transform: rotate(0deg);
}
to {
transform: rotate(360deg);
}
}
#share-btn-container {padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; max-width: 13rem; margin-left: auto;}
div#share-btn-container > div {flex-direction: row;background: black;align-items: center}
#share-btn-container:hover {background-color: #060606}
#share-btn {all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.5rem !important; padding-bottom: 0.5rem !important;right:0;}
#share-btn * {all: unset}
#share-btn-container div:nth-child(-n+2){width: auto !important;min-height: 0px !important;}
#share-btn-container .wrap {display: none !important}
#share-btn-container.hidden {display: none!important}
#prompt input{width: calc(100% - 160px);border-top-right-radius: 0px;border-bottom-right-radius: 0px;}
#run_button{position:absolute;margin-top: 11px;right: 0;margin-right: 0.8em;border-bottom-left-radius: 0px;
border-top-left-radius: 0px;}
#prompt-container{margin-top:-18px;}
#prompt-container .form{border-top-left-radius: 0;border-top-right-radius: 0}
#image_upload{border-bottom-left-radius: 0px;border-bottom-right-radius: 0px}
'''
image_blocks = gr.Blocks(css=css, elem_id="total-container")
with image_blocks as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("## BRIA Eraser")
gr.HTML('''
<p style="margin-bottom: 10px; font-size: 94%">
This is a demo for
<a href="https://huggingface.co/briaai/BRIA-2.3-ControlNet-Inpainting" target="_blank">BRIA 2.3 ControlNet Inpainting</a>.
BRIA Eraser enables the ability to clear out and clean areas in an image or remove specific elements, while trained on licensed data, and so provide full legal liability coverage for copyright and privacy infringement.
</p>
''')
with gr.Row():
with gr.Column():
image = gr.ImageEditor(sources=["upload"], layers=False, transforms=[], brush=gr.Brush(colors=["#000000"], color_mode="fixed")) #gr.Image(sources=['upload'], tool='sketch', elem_id="image_upload", type="pil", label="Upload", height=400)
with gr.Row(elem_id="prompt-container", equal_height=True):
with gr.Row():
prompt = gr.Textbox(placeholder="Your prompt (what you want in place of what is erased)", show_label=False, elem_id="prompt")
btn = gr.Button("Inpaint!", elem_id="run_button")
with gr.Accordion(label="Advanced Settings", open=False):
with gr.Row(equal_height=True):
guidance_scale = gr.Number(value=1.2, minimum=0.8, maximum=2.5, step=0.1, label="guidance_scale")
steps = gr.Number(value=12, minimum=6, maximum=20, step=1, label="steps")
# strength = gr.Number(value=1, minimum=0.01, maximum=1.0, step=0.01, label="strength")
seed = gr.Number(value=123456, minimum=0, maximum=999999, step=1, label="seed")
negative_prompt = gr.Textbox(label="negative_prompt", value=default_negative_prompt, placeholder=default_negative_prompt, info="what you don't want to see in the image")
with gr.Column():
image_out = gr.Image(label="Output", elem_id="output-img", height=400)
btn.click(fn=predict, inputs=[image, prompt, negative_prompt, guidance_scale, steps, seed], outputs=[image_out], api_name='run')
prompt.submit(fn=predict, inputs=[image, prompt, negative_prompt, guidance_scale, steps, seed], outputs=[image_out])
gr.HTML(
"""
<div class="footer">
<p>Model by <a href="https://huggingface.co/diffusers" style="text-decoration: underline;" target="_blank">Diffusers</a> - Gradio Demo by 🤗 Hugging Face
</p>
</div>
"""
)
image_blocks.queue(max_size=25,api_open=False).launch(show_api=False) |