File size: 11,307 Bytes
884e760
 
6c74fa1
 
 
4422333
6c74fa1
 
 
6a1229b
 
 
 
 
 
 
 
 
 
 
 
 
 
6c74fa1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a1229b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c74fa1
 
 
 
 
 
 
 
 
 
 
 
6a1229b
dc73fb6
6a1229b
 
6c74fa1
6a1229b
 
 
6c74fa1
8fef8eb
52ee6fe
6a1229b
971d02a
6a1229b
 
 
5453ac3
6c74fa1
 
 
 
 
 
 
 
 
1403e61
84c395b
6c74fa1
 
 
18fa5fa
 
 
6c74fa1
6a1229b
6c74fa1
6a1229b
 
6c74fa1
6a1229b
 
 
 
6c74fa1
6a1229b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c6dcb6
971d02a
6a1229b
 
 
 
 
 
05f76db
 
6a1229b
52cddc8
6a1229b
0e896d4
6a1229b
5453ac3
6c74fa1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcbf369
6c74fa1
 
dcbf369
 
6c74fa1
 
 
 
 
 
8655801
6c74fa1
 
 
0d20806
8655801
6c74fa1
 
 
 
2b46a79
6c74fa1
 
dcbf369
6c74fa1
 
 
 
971d02a
 
 
 
7797ad1
6c74fa1
 
 
 
 
 
 
84c395b
0b58f45
6c74fa1
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import gradio as gr
import torch
import numpy as np
import diffusers
import os
import spaces
from PIL import Image
hf_token = os.environ.get("HF_TOKEN")
from diffusers import StableDiffusionXLInpaintPipeline, DDIMScheduler, UNet2DConditionModel
from diffusers import (
    AutoencoderKL,
    LCMScheduler,
)
from pipeline_controlnet_sd_xl import StableDiffusionXLControlNetPipeline
from controlnet import ControlNetModel, ControlNetConditioningEmbedding
import torch
import numpy as np
from PIL import Image
import requests
import PIL
from io import BytesIO
from torchvision import transforms


ratios_map =  {
    0.5:{"width":704,"height":1408},
    0.57:{"width":768,"height":1344},
    0.68:{"width":832,"height":1216},
    0.72:{"width":832,"height":1152},
    0.78:{"width":896,"height":1152},
    0.82:{"width":896,"height":1088},
    0.88:{"width":960,"height":1088},
    0.94:{"width":960,"height":1024},
    1.00:{"width":1024,"height":1024},
    1.13:{"width":1088,"height":960},
    1.21:{"width":1088,"height":896},
    1.29:{"width":1152,"height":896},
    1.38:{"width":1152,"height":832},
    1.46:{"width":1216,"height":832},
    1.67:{"width":1280,"height":768},
    1.75:{"width":1344,"height":768},
    2.00:{"width":1408,"height":704}
}
ratios = np.array(list(ratios_map.keys()))

image_transforms = transforms.Compose(
    [
        transforms.ToTensor(),
    ]
)

default_negative_prompt = "Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers"


def get_masked_image(image, image_mask, width, height):
    image_mask = image_mask # inpaint area is white
    image_mask = image_mask.resize((width, height)) # object to remove is white (1)
    image_mask_pil = image_mask
    image = np.array(image.convert("RGB")).astype(np.float32) / 255.0
    image_mask = np.array(image_mask_pil.convert("L")).astype(np.float32) / 255.0
    assert image.shape[0:1] == image_mask.shape[0:1], "image and image_mask must have the same image size"
    masked_image_to_present = image.copy()
    masked_image_to_present[image_mask > 0.5] = (0.5,0.5,0.5)  # set as masked pixel
    image[image_mask > 0.5] = 0.5  # set as masked pixel - s.t. will be grey 
    image = Image.fromarray((image * 255.0).astype(np.uint8))
    masked_image_to_present = Image.fromarray((masked_image_to_present * 255.0).astype(np.uint8))
    return image, image_mask_pil, masked_image_to_present

    
def get_size(init_image):
    w,h=init_image.size
    curr_ratio = w/h
    ind = np.argmin(np.abs(curr_ratio-ratios))
    ratio = ratios[ind]
    chosen_ratio  = ratios_map[ratio]
    w,h = chosen_ratio['width'], chosen_ratio['height']

    return w,h

device = "cuda" if torch.cuda.is_available() else "cpu"

# Load, init model
controlnet = ControlNetModel().from_pretrained("briaai/DEV-ControlNetInpaintingFast", torch_dtype=torch.float16)
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
pipe = StableDiffusionXLControlNetPipeline.from_pretrained("briaai/BRIA-2.3", controlnet=controlnet.to(dtype=torch.float16), torch_dtype=torch.float16, vae=vae) #force_zeros_for_empty_prompt=False, # vae=vae)

pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
pipe.load_lora_weights("briaai/BRIA-2.3-FAST-LORA")
pipe.fuse_lora()

pipe = pipe.to(device)
# pipe.enable_xformers_memory_efficient_attention()

# generator = torch.Generator(device='cuda').manual_seed(123456)

vae = pipe.vae

pipe.enable_model_cpu_offload() 

def read_content(file_path: str) -> str:
    """read the content of target file
    """
    with open(file_path, 'r', encoding='utf-8') as f:
        content = f.read()

    return content

@spaces.GPU(enable_queue=True)
def predict(dict, prompt="", negative_prompt = default_negative_prompt, guidance_scale=1.2, steps=12, seed=123456):
    if negative_prompt == "":
        negative_prompt = None

    init_image = Image.fromarray(dict['background'][:, :, :3], 'RGB') #dict['background'].convert("RGB")#.resize((1024, 1024))
    mask = Image.fromarray(dict['layers'][0][:,:,3], 'L') #dict['layers'].convert("RGB")#.resize((1024, 1024))


    width, height = get_size(init_image)

    init_image = init_image.resize((width, height))
    mask = mask.resize((width, height))
    

    masked_image, image_mask, masked_image_to_present = get_masked_image(init_image, mask, width, height)
    masked_image_tensor = image_transforms(masked_image)
    masked_image_tensor = (masked_image_tensor - 0.5) / 0.5
    
    masked_image_tensor = masked_image_tensor.unsqueeze(0).to(device="cuda")
    
    control_latents = vae.encode(  
            masked_image_tensor[:, :3, :, :].to(vae.dtype)
        ).latent_dist.sample()
    
    control_latents = control_latents * vae.config.scaling_factor 
    
    image_mask = np.array(image_mask)[:,:]
    mask_tensor = torch.tensor(image_mask, dtype=torch.float32)[None, ...]
    # binarize the mask
    mask_tensor = torch.where(mask_tensor > 128.0, 255.0, 0)       
    
    mask_tensor = mask_tensor / 255.0
    
    mask_tensor = mask_tensor.to(device="cuda")
    mask_resized = torch.nn.functional.interpolate(mask_tensor[None, ...], size=(control_latents.shape[2], control_latents.shape[3]), mode='nearest')
    # mask_resized = mask_resized.to(torch.float16)
    masked_image = torch.cat([control_latents, mask_resized], dim=1)

    generator = torch.Generator(device='cuda').manual_seed(int(seed))
    
    output = pipe(prompt = prompt,
                  width=width,
                  height=height,
                  negative_prompt=negative_prompt,
                  image = masked_image, # control image V
                  init_image = init_image,
                  mask_image = mask_tensor,
                  guidance_scale = guidance_scale,
                  num_inference_steps=int(steps),
                  # strength=strength,
                  generator=generator,
                  controlnet_conditioning_sale=1.0)

    torch.cuda.empty_cache
    return output.images[0] #, gr.update(visible=True)


css = '''
.gradio-container{max-width: 1100px !important}
#image_upload{min-height:400px}
#image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 400px}
#mask_radio .gr-form{background:transparent; border: none}
#word_mask{margin-top: .75em !important}
#word_mask textarea:disabled{opacity: 0.3}
.footer {margin-bottom: 45px;margin-top: 35px;text-align: center;border-bottom: 1px solid #e5e5e5}
.footer>p {font-size: .8rem; display: inline-block; padding: 0 10px;transform: translateY(10px);background: white}
.dark .footer {border-color: #303030}
.dark .footer>p {background: #0b0f19}
.acknowledgments h4{margin: 1.25em 0 .25em 0;font-weight: bold;font-size: 115%}
#image_upload .touch-none{display: flex}
@keyframes spin {
    from {
        transform: rotate(0deg);
    }
    to {
        transform: rotate(360deg);
    }
}
#share-btn-container {padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; max-width: 13rem; margin-left: auto;}
div#share-btn-container > div {flex-direction: row;background: black;align-items: center}
#share-btn-container:hover {background-color: #060606}
#share-btn {all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.5rem !important; padding-bottom: 0.5rem !important;right:0;}
#share-btn * {all: unset}
#share-btn-container div:nth-child(-n+2){width: auto !important;min-height: 0px !important;}
#share-btn-container .wrap {display: none !important}
#share-btn-container.hidden {display: none!important}
#prompt input{width: calc(100% - 160px);border-top-right-radius: 0px;border-bottom-right-radius: 0px;}
#run_button{position:absolute;margin-top: 11px;right: 0;margin-right: 0.8em;border-bottom-left-radius: 0px;
    border-top-left-radius: 0px;}
#prompt-container{margin-top:-18px;}
#prompt-container .form{border-top-left-radius: 0;border-top-right-radius: 0}
#image_upload{border-bottom-left-radius: 0px;border-bottom-right-radius: 0px}
'''

image_blocks = gr.Blocks(css=css, elem_id="total-container")
with image_blocks as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("## BRIA Inpainting")
        gr.HTML('''
          <p style="margin-bottom: 10px; font-size: 94%">
            This is a demo for 
            <a href="https://huggingface.co/briaai/BRIA-2.3-ControlNet-Inpainting" target="_blank">BRIA 2.3 ControlNet Inpainting</a>. 
            BRIA Inpainting enables the ability to clear out and clean areas in an image or remove specific elements, while trained on licensed data, and so provide full legal liability coverage for copyright and privacy infringement.
          </p>
        ''')
    with gr.Row():
                with gr.Column():
                    image = gr.ImageEditor(sources=["upload"], layers=False, transforms=[], brush=gr.Brush(colors=["#000000"], color_mode="fixed")) #gr.Image(sources=['upload'], tool='sketch', elem_id="image_upload", type="pil", label="Upload", height=400)
                    with gr.Row(elem_id="prompt-container", equal_height=True):
                        with gr.Row():
                            prompt = gr.Textbox(placeholder="Your prompt (what you want in place of what is erased)", show_label=False, elem_id="prompt")
                            btn = gr.Button("Inpaint!", elem_id="run_button")
                    
                    with gr.Accordion(label="Advanced Settings", open=False):
                        with gr.Row(equal_height=True):
                            guidance_scale = gr.Number(value=1.2, minimum=0.8, maximum=2.5, step=0.1, label="guidance_scale")
                            steps = gr.Number(value=12, minimum=6, maximum=20, step=1, label="steps")
                            # strength = gr.Number(value=1, minimum=0.01, maximum=1.0, step=0.01, label="strength")
                            seed = gr.Number(value=123456, minimum=0, maximum=999999, step=1, label="seed")
                            negative_prompt = gr.Textbox(label="negative_prompt", value=default_negative_prompt, placeholder=default_negative_prompt, info="what you don't want to see in the image")

                        
                with gr.Column():
                    image_out = gr.Image(label="Output", elem_id="output-img", height=400)

            

    btn.click(fn=predict, inputs=[image, prompt, negative_prompt, guidance_scale, steps, seed], outputs=[image_out], api_name='run')
    prompt.submit(fn=predict, inputs=[image, prompt, negative_prompt, guidance_scale, steps, seed], outputs=[image_out])

    gr.HTML(
        """
            <div class="footer">
                <p>Model by <a href="https://huggingface.co/diffusers" style="text-decoration: underline;" target="_blank">Diffusers</a> - Gradio Demo by 🤗 Hugging Face
                </p>
            </div>
        """
    )

image_blocks.queue(max_size=25,api_open=False).launch(show_api=False)