File size: 5,922 Bytes
29a229f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
from pathlib import Path
import torch
import argparse
import os
import cv2
import numpy as np

from hmr2.configs import get_config
from hmr2.models import HMR2
from hmr2.utils import recursive_to
from hmr2.datasets.vitdet_dataset import ViTDetDataset, DEFAULT_MEAN, DEFAULT_STD
from hmr2.utils.renderer import Renderer, cam_crop_to_full

LIGHT_BLUE=(0.65098039,  0.74117647,  0.85882353)
# DEFAULT_CHECKPOINT='logs/train/multiruns/20b1_mix11_a1/0/checkpoints/epoch=30-step=1000000.ckpt'
DEFAULT_CHECKPOINT='logs/train/multiruns/hmr2/0/checkpoints/epoch=35-step=1000000.ckpt'
parser = argparse.ArgumentParser(description='HMR2 demo code')
parser.add_argument('--checkpoint', type=str, default=DEFAULT_CHECKPOINT, help='Path to pretrained model checkpoint')
parser.add_argument('--img_folder', type=str, default='example_data/images', help='Folder with input images')
parser.add_argument('--out_folder', type=str, default='demo_out', help='Output folder to save rendered results')
parser.add_argument('--side_view', dest='side_view', action='store_true', default=False, help='If set, render side view also')
parser.add_argument('--batch_size', type=int, default=1, help='Batch size for inference/fitting')

args = parser.parse_args()

# Setup HMR2.0 model
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
model_cfg = str(Path(args.checkpoint).parent.parent / 'model_config.yaml')
model_cfg = get_config(model_cfg)
model = HMR2.load_from_checkpoint(args.checkpoint, strict=False, cfg=model_cfg).to(device)
model.eval()

# Load detector
from detectron2.config import LazyConfig
from hmr2.utils.utils_detectron2 import DefaultPredictor_Lazy
detectron2_cfg = LazyConfig.load(f"vendor/detectron2/projects/ViTDet/configs/COCO/cascade_mask_rcnn_vitdet_h_75ep.py")
detectron2_cfg.train.init_checkpoint = "https://dl.fbaipublicfiles.com/detectron2/ViTDet/COCO/cascade_mask_rcnn_vitdet_h/f328730692/model_final_f05665.pkl"
for i in range(3):
    detectron2_cfg.model.roi_heads.box_predictors[i].test_score_thresh = 0.25
detector = DefaultPredictor_Lazy(detectron2_cfg)

# Setup the renderer
renderer = Renderer(model_cfg, faces=model.smpl.faces)

# Make output directory if it does not exist
os.makedirs(args.out_folder, exist_ok=True)

# Iterate over all images in folder
for img_path in Path(args.img_folder).glob('*.png'):
    img_cv2 = cv2.imread(str(img_path), cv2.IMREAD_COLOR)

    # Detect humans in image
    det_out = detector(img_cv2)

    det_instances = det_out['instances']
    valid_idx = (det_instances.pred_classes==0) & (det_instances.scores > 0.5)
    boxes=det_instances.pred_boxes.tensor[valid_idx].cpu().numpy()

    # Run HMR2.0 on all detected humans
    dataset = ViTDetDataset(model_cfg, img_cv2.copy(), boxes)
    dataloader = torch.utils.data.DataLoader(dataset, batch_size=8, shuffle=False, num_workers=0)


    all_verts = []
    all_cam_t = []

    for batch in dataloader:
        batch = recursive_to(batch, device)
        with torch.no_grad():
            out = model(batch)

        pred_cam = out['pred_cam']
        box_center = batch["box_center"].float()
        box_size = batch["box_size"].float()
        img_size = batch["img_size"].float()
        render_size = img_size
        pred_cam_t = cam_crop_to_full(pred_cam, box_center, box_size, render_size).detach().cpu().numpy()

        # Render the result
        batch_size = batch['img'].shape[0]
        for n in range(batch_size):
            # Get filename from path img_path
            img_fn, _ = os.path.splitext(os.path.basename(img_path))
            person_id = int(batch['personid'][n])
            white_img = (torch.ones_like(batch['img'][n]).cpu() - DEFAULT_MEAN[:,None,None]/255) / (DEFAULT_STD[:,None,None]/255)
            input_patch = batch['img'][n].cpu() * (DEFAULT_STD[:,None,None]/255) + (DEFAULT_MEAN[:,None,None]/255)
            input_patch = input_patch.permute(1,2,0).numpy()
            
            regression_img = renderer(out['pred_vertices'][n].detach().cpu().numpy(),
                                    out['pred_cam_t'][n].detach().cpu().numpy(),
                                    batch['img'][n],
                                    mesh_base_color=LIGHT_BLUE,
                                    scene_bg_color=(1, 1, 1),
                                    )

            if args.side_view:
                side_img = renderer(out['pred_vertices'][n].detach().cpu().numpy(),
                                        out['pred_cam_t'][n].detach().cpu().numpy(),
                                        white_img,
                                        mesh_base_color=LIGHT_BLUE,
                                        scene_bg_color=(1, 1, 1),
                                        side_view=True)
                final_img = np.concatenate([input_patch, regression_img, side_img], axis=1)
            else:
                final_img = np.concatenate([input_patch, regression_img], axis=1)


            verts = out['pred_vertices'][n].detach().cpu().numpy()
            cam_t = pred_cam_t[n]

            all_verts.append(verts)
            all_cam_t.append(cam_t)

    misc_args = dict(
        mesh_base_color=LIGHT_BLUE,
        scene_bg_color=(1, 1, 1),
    )

    # Render front view
    if len(all_verts) > 0:
        cam_view = renderer.render_rgba_multiple(all_verts, cam_t=all_cam_t, render_res=render_size[n], **misc_args)

        # Overlay image
        input_img = img_cv2.astype(np.float32)[:,:,::-1]/255.0
        input_img = np.concatenate([input_img, np.ones_like(input_img[:,:,:1])], axis=2) # Add alpha channel
        input_img_overlay = input_img[:,:,:3] * (1-cam_view[:,:,3:]) + cam_view[:,:,:3] * cam_view[:,:,3:]


        # cv2.imwrite(os.path.join(args.out_folder, f'{img_fn}_{person_id}.jpg'), 255*final_img[:, :, ::-1])
        cv2.imwrite(os.path.join(args.out_folder, f'rend_{img_fn}.jpg'), 255*input_img_overlay[:, :, ::-1])