Spaces:
Runtime error
Runtime error
File size: 2,474 Bytes
29a229f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
"""
DensePose Training Script.
This script is similar to the training script in detectron2/tools.
It is an example of how a user might use detectron2 for a new project.
"""
from datetime import timedelta
import detectron2.utils.comm as comm
from detectron2.config import get_cfg
from detectron2.engine import DEFAULT_TIMEOUT, default_argument_parser, default_setup, hooks, launch
from detectron2.evaluation import verify_results
from detectron2.utils.file_io import PathManager
from detectron2.utils.logger import setup_logger
from densepose import add_densepose_config
from densepose.engine import Trainer
from densepose.modeling.densepose_checkpoint import DensePoseCheckpointer
def setup(args):
cfg = get_cfg()
add_densepose_config(cfg)
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
default_setup(cfg, args)
# Setup logger for "densepose" module
setup_logger(output=cfg.OUTPUT_DIR, distributed_rank=comm.get_rank(), name="densepose")
return cfg
def main(args):
cfg = setup(args)
# disable strict kwargs checking: allow one to specify path handle
# hints through kwargs, like timeout in DP evaluation
PathManager.set_strict_kwargs_checking(False)
if args.eval_only:
model = Trainer.build_model(cfg)
DensePoseCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
cfg.MODEL.WEIGHTS, resume=args.resume
)
res = Trainer.test(cfg, model)
if cfg.TEST.AUG.ENABLED:
res.update(Trainer.test_with_TTA(cfg, model))
if comm.is_main_process():
verify_results(cfg, res)
return res
trainer = Trainer(cfg)
trainer.resume_or_load(resume=args.resume)
if cfg.TEST.AUG.ENABLED:
trainer.register_hooks(
[hooks.EvalHook(0, lambda: trainer.test_with_TTA(cfg, trainer.model))]
)
return trainer.train()
if __name__ == "__main__":
args = default_argument_parser().parse_args()
cfg = setup(args)
timeout = (
DEFAULT_TIMEOUT if cfg.DENSEPOSE_EVALUATION.DISTRIBUTED_INFERENCE else timedelta(hours=4)
)
print("Command Line Args:", args)
launch(
main,
args.num_gpus,
num_machines=args.num_machines,
machine_rank=args.machine_rank,
dist_url=args.dist_url,
args=(args,),
timeout=timeout,
)
|