HMR2.0 / app.py
brjathu's picture
Speedup (#2)
ad3be6b
raw
history blame
5.76 kB
import argparse
import os
from pathlib import Path
import sys
import cv2
import gradio as gr
import numpy as np
import torch
from PIL import Image
os.system('pip install /home/user/app/vendor/pyrender')
sys.path.append('/home/user/app/vendor/pyrender')
from hmr2.configs import get_config
from hmr2.datasets.vitdet_dataset import (DEFAULT_MEAN, DEFAULT_STD,
ViTDetDataset)
from hmr2.models import HMR2
from hmr2.utils import recursive_to
from hmr2.utils.renderer import Renderer, cam_crop_to_full
os.environ["PYOPENGL_PLATFORM"] = "egl"
os.environ["MESA_GL_VERSION_OVERRIDE"] = "4.1"
try:
import detectron2
except:
import os
os.system('pip install git+https://github.com/facebookresearch/detectron2.git')
# Setup HMR2.0 model
LIGHT_BLUE=(0.65098039, 0.74117647, 0.85882353)
DEFAULT_CHECKPOINT='logs/train/multiruns/hmr2/0/checkpoints/epoch=35-step=1000000.ckpt'
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
model_cfg = str(Path(DEFAULT_CHECKPOINT).parent.parent / 'model_config.yaml')
model_cfg = get_config(model_cfg)
model = HMR2.load_from_checkpoint(DEFAULT_CHECKPOINT, strict=False, cfg=model_cfg).to(device)
model.eval()
# Load detector
from detectron2.config import LazyConfig
from hmr2.utils.utils_detectron2 import DefaultPredictor_Lazy
detectron2_cfg = LazyConfig.load(f"vendor/detectron2/projects/ViTDet/configs/COCO/cascade_mask_rcnn_vitdet_h_75ep.py")
detectron2_cfg.train.init_checkpoint = "https://dl.fbaipublicfiles.com/detectron2/ViTDet/COCO/cascade_mask_rcnn_vitdet_h/f328730692/model_final_f05665.pkl"
for i in range(3):
detectron2_cfg.model.roi_heads.box_predictors[i].test_score_thresh = 0.25
detector = DefaultPredictor_Lazy(detectron2_cfg)
# Setup the renderer
renderer = Renderer(model_cfg, faces=model.smpl.faces)
import numpy as np
def infer(in_pil_img, in_threshold=0.8, out_pil_img=None):
open_cv_image = np.array(in_pil_img)
# Convert RGB to BGR
open_cv_image = open_cv_image[:, :, ::-1].copy()
print("EEEEE", open_cv_image.shape)
det_out = detector(open_cv_image)
det_instances = det_out['instances']
valid_idx = (det_instances.pred_classes==0) & (det_instances.scores > in_threshold)
boxes=det_instances.pred_boxes.tensor[valid_idx].cpu().numpy()
# Run HMR2.0 on all detected humans
dataset = ViTDetDataset(model_cfg, open_cv_image, boxes)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=8, shuffle=False, num_workers=0)
all_verts = []
all_cam_t = []
for batch in dataloader:
batch = recursive_to(batch, device)
with torch.no_grad():
out = model(batch)
pred_cam = out['pred_cam']
box_center = batch["box_center"].float()
box_size = batch["box_size"].float()
img_size = batch["img_size"].float()
render_size = img_size
pred_cam_t = cam_crop_to_full(pred_cam, box_center, box_size, render_size).detach().cpu().numpy()
# Render the result
batch_size = batch['img'].shape[0]
for n in range(batch_size):
# Get filename from path img_path
# img_fn, _ = os.path.splitext(os.path.basename(img_path))
person_id = int(batch['personid'][n])
white_img = (torch.ones_like(batch['img'][n]).cpu() - DEFAULT_MEAN[:,None,None]/255) / (DEFAULT_STD[:,None,None]/255)
input_patch = batch['img'][n].cpu() * (DEFAULT_STD[:,None,None]/255) + (DEFAULT_MEAN[:,None,None]/255)
input_patch = input_patch.permute(1,2,0).numpy()
verts = out['pred_vertices'][n].detach().cpu().numpy()
cam_t = pred_cam_t[n]
all_verts.append(verts)
all_cam_t.append(cam_t)
# Render front view
if len(all_verts) > 0:
misc_args = dict(
mesh_base_color=LIGHT_BLUE,
scene_bg_color=(1, 1, 1),
)
cam_view = renderer.render_rgba_multiple(all_verts, cam_t=all_cam_t, render_res=render_size[n], **misc_args)
# Overlay image
input_img = open_cv_image.astype(np.float32)[:,:,::-1]/255.0
input_img = np.concatenate([input_img, np.ones_like(input_img[:,:,:1])], axis=2) # Add alpha channel
input_img_overlay = input_img[:,:,:3] * (1-cam_view[:,:,3:]) + cam_view[:,:,:3] * cam_view[:,:,3:]
# convert to PIL image
out_pil_img = Image.fromarray((input_img_overlay*255).astype(np.uint8))
return out_pil_img
else:
return None
with gr.Blocks(title="4DHumans", css=".gradio-container") as demo:
gr.HTML("""<div style="font-weight:bold; text-align:center; color:royalblue;">HMR 2.0</div>""")
with gr.Row():
input_image = gr.Image(label="Input image", type="pil", width=300, height=300, fixed_size=True)
output_image = gr.Image(label="Reconstructions", type="pil", width=300, height=300, fixed_size=True)
gr.HTML("""<br/>""")
with gr.Row():
threshold = gr.Slider(0, 1.0, value=0.6, label='Detection Threshold')
send_btn = gr.Button("Infer")
send_btn.click(fn=infer, inputs=[input_image, threshold], outputs=[output_image])
# gr.Examples([
# ['assets/test1.png', 0.6],
# ['assets/test2.jpg', 0.6],
# ['assets/test3.jpg', 0.6],
# ['assets/test4.jpg', 0.6],
# ['assets/test5.jpg', 0.6],
# ],
# inputs=[input_image, threshold])
gr.Examples([
['assets/test1.png'],
['assets/test2.jpg'],
['assets/test3.jpg'],
['assets/test4.jpg'],
['assets/test5.jpg'],
],
inputs=[input_image, 0.6])
gr.HTML("""</ul>""")
#demo.queue()
demo.launch(debug=True)
### EOF ###