Spaces:
Runtime error
Runtime error
""" | |
Parts of the code are taken or adapted from | |
https://github.com/mkocabas/EpipolarPose/blob/master/lib/utils/img_utils.py | |
""" | |
import torch | |
import numpy as np | |
from skimage.transform import rotate, resize | |
from skimage.filters import gaussian | |
import random | |
import cv2 | |
from typing import List, Dict, Tuple | |
from yacs.config import CfgNode | |
def expand_to_aspect_ratio(input_shape, target_aspect_ratio=None): | |
"""Increase the size of the bounding box to match the target shape.""" | |
if target_aspect_ratio is None: | |
return input_shape | |
try: | |
w , h = input_shape | |
except (ValueError, TypeError): | |
return input_shape | |
w_t, h_t = target_aspect_ratio | |
if h / w < h_t / w_t: | |
h_new = max(w * h_t / w_t, h) | |
w_new = w | |
else: | |
h_new = h | |
w_new = max(h * w_t / h_t, w) | |
if h_new < h or w_new < w: | |
breakpoint() | |
return np.array([w_new, h_new]) | |
def do_augmentation(aug_config: CfgNode) -> Tuple: | |
""" | |
Compute random augmentation parameters. | |
Args: | |
aug_config (CfgNode): Config containing augmentation parameters. | |
Returns: | |
scale (float): Box rescaling factor. | |
rot (float): Random image rotation. | |
do_flip (bool): Whether to flip image or not. | |
do_extreme_crop (bool): Whether to apply extreme cropping (as proposed in EFT). | |
color_scale (List): Color rescaling factor | |
tx (float): Random translation along the x axis. | |
ty (float): Random translation along the y axis. | |
""" | |
tx = np.clip(np.random.randn(), -1.0, 1.0) * aug_config.TRANS_FACTOR | |
ty = np.clip(np.random.randn(), -1.0, 1.0) * aug_config.TRANS_FACTOR | |
scale = np.clip(np.random.randn(), -1.0, 1.0) * aug_config.SCALE_FACTOR + 1.0 | |
rot = np.clip(np.random.randn(), -2.0, | |
2.0) * aug_config.ROT_FACTOR if random.random() <= aug_config.ROT_AUG_RATE else 0 | |
do_flip = aug_config.DO_FLIP and random.random() <= aug_config.FLIP_AUG_RATE | |
do_extreme_crop = random.random() <= aug_config.EXTREME_CROP_AUG_RATE | |
extreme_crop_lvl = aug_config.get('EXTREME_CROP_AUG_LEVEL', 0) | |
# extreme_crop_lvl = 0 | |
c_up = 1.0 + aug_config.COLOR_SCALE | |
c_low = 1.0 - aug_config.COLOR_SCALE | |
color_scale = [random.uniform(c_low, c_up), random.uniform(c_low, c_up), random.uniform(c_low, c_up)] | |
return scale, rot, do_flip, do_extreme_crop, extreme_crop_lvl, color_scale, tx, ty | |
def rotate_2d(pt_2d: np.array, rot_rad: float) -> np.array: | |
""" | |
Rotate a 2D point on the x-y plane. | |
Args: | |
pt_2d (np.array): Input 2D point with shape (2,). | |
rot_rad (float): Rotation angle | |
Returns: | |
np.array: Rotated 2D point. | |
""" | |
x = pt_2d[0] | |
y = pt_2d[1] | |
sn, cs = np.sin(rot_rad), np.cos(rot_rad) | |
xx = x * cs - y * sn | |
yy = x * sn + y * cs | |
return np.array([xx, yy], dtype=np.float32) | |
def gen_trans_from_patch_cv(c_x: float, c_y: float, | |
src_width: float, src_height: float, | |
dst_width: float, dst_height: float, | |
scale: float, rot: float) -> np.array: | |
""" | |
Create transformation matrix for the bounding box crop. | |
Args: | |
c_x (float): Bounding box center x coordinate in the original image. | |
c_y (float): Bounding box center y coordinate in the original image. | |
src_width (float): Bounding box width. | |
src_height (float): Bounding box height. | |
dst_width (float): Output box width. | |
dst_height (float): Output box height. | |
scale (float): Rescaling factor for the bounding box (augmentation). | |
rot (float): Random rotation applied to the box. | |
Returns: | |
trans (np.array): Target geometric transformation. | |
""" | |
# augment size with scale | |
src_w = src_width * scale | |
src_h = src_height * scale | |
src_center = np.zeros(2) | |
src_center[0] = c_x | |
src_center[1] = c_y | |
# augment rotation | |
rot_rad = np.pi * rot / 180 | |
src_downdir = rotate_2d(np.array([0, src_h * 0.5], dtype=np.float32), rot_rad) | |
src_rightdir = rotate_2d(np.array([src_w * 0.5, 0], dtype=np.float32), rot_rad) | |
dst_w = dst_width | |
dst_h = dst_height | |
dst_center = np.array([dst_w * 0.5, dst_h * 0.5], dtype=np.float32) | |
dst_downdir = np.array([0, dst_h * 0.5], dtype=np.float32) | |
dst_rightdir = np.array([dst_w * 0.5, 0], dtype=np.float32) | |
src = np.zeros((3, 2), dtype=np.float32) | |
src[0, :] = src_center | |
src[1, :] = src_center + src_downdir | |
src[2, :] = src_center + src_rightdir | |
dst = np.zeros((3, 2), dtype=np.float32) | |
dst[0, :] = dst_center | |
dst[1, :] = dst_center + dst_downdir | |
dst[2, :] = dst_center + dst_rightdir | |
trans = cv2.getAffineTransform(np.float32(src), np.float32(dst)) | |
return trans | |
def trans_point2d(pt_2d: np.array, trans: np.array): | |
""" | |
Transform a 2D point using translation matrix trans. | |
Args: | |
pt_2d (np.array): Input 2D point with shape (2,). | |
trans (np.array): Transformation matrix. | |
Returns: | |
np.array: Transformed 2D point. | |
""" | |
src_pt = np.array([pt_2d[0], pt_2d[1], 1.]).T | |
dst_pt = np.dot(trans, src_pt) | |
return dst_pt[0:2] | |
def get_transform(center, scale, res, rot=0): | |
"""Generate transformation matrix.""" | |
"""Taken from PARE: https://github.com/mkocabas/PARE/blob/6e0caca86c6ab49ff80014b661350958e5b72fd8/pare/utils/image_utils.py""" | |
h = 200 * scale | |
t = np.zeros((3, 3)) | |
t[0, 0] = float(res[1]) / h | |
t[1, 1] = float(res[0]) / h | |
t[0, 2] = res[1] * (-float(center[0]) / h + .5) | |
t[1, 2] = res[0] * (-float(center[1]) / h + .5) | |
t[2, 2] = 1 | |
if not rot == 0: | |
rot = -rot # To match direction of rotation from cropping | |
rot_mat = np.zeros((3, 3)) | |
rot_rad = rot * np.pi / 180 | |
sn, cs = np.sin(rot_rad), np.cos(rot_rad) | |
rot_mat[0, :2] = [cs, -sn] | |
rot_mat[1, :2] = [sn, cs] | |
rot_mat[2, 2] = 1 | |
# Need to rotate around center | |
t_mat = np.eye(3) | |
t_mat[0, 2] = -res[1] / 2 | |
t_mat[1, 2] = -res[0] / 2 | |
t_inv = t_mat.copy() | |
t_inv[:2, 2] *= -1 | |
t = np.dot(t_inv, np.dot(rot_mat, np.dot(t_mat, t))) | |
return t | |
def transform(pt, center, scale, res, invert=0, rot=0, as_int=True): | |
"""Transform pixel location to different reference.""" | |
"""Taken from PARE: https://github.com/mkocabas/PARE/blob/6e0caca86c6ab49ff80014b661350958e5b72fd8/pare/utils/image_utils.py""" | |
t = get_transform(center, scale, res, rot=rot) | |
if invert: | |
t = np.linalg.inv(t) | |
new_pt = np.array([pt[0] - 1, pt[1] - 1, 1.]).T | |
new_pt = np.dot(t, new_pt) | |
if as_int: | |
new_pt = new_pt.astype(int) | |
return new_pt[:2] + 1 | |
def crop_img(img, ul, br, border_mode=cv2.BORDER_CONSTANT, border_value=0): | |
c_x = (ul[0] + br[0])/2 | |
c_y = (ul[1] + br[1])/2 | |
bb_width = patch_width = br[0] - ul[0] | |
bb_height = patch_height = br[1] - ul[1] | |
trans = gen_trans_from_patch_cv(c_x, c_y, bb_width, bb_height, patch_width, patch_height, 1.0, 0) | |
img_patch = cv2.warpAffine(img, trans, (int(patch_width), int(patch_height)), | |
flags=cv2.INTER_LINEAR, | |
borderMode=border_mode, | |
borderValue=border_value | |
) | |
# Force borderValue=cv2.BORDER_CONSTANT for alpha channel | |
if (img.shape[2] == 4) and (border_mode != cv2.BORDER_CONSTANT): | |
img_patch[:,:,3] = cv2.warpAffine(img[:,:,3], trans, (int(patch_width), int(patch_height)), | |
flags=cv2.INTER_LINEAR, | |
borderMode=cv2.BORDER_CONSTANT, | |
) | |
return img_patch | |
def generate_image_patch_skimage(img: np.array, c_x: float, c_y: float, | |
bb_width: float, bb_height: float, | |
patch_width: float, patch_height: float, | |
do_flip: bool, scale: float, rot: float, | |
border_mode=cv2.BORDER_CONSTANT, border_value=0) -> Tuple[np.array, np.array]: | |
""" | |
Crop image according to the supplied bounding box. | |
Args: | |
img (np.array): Input image of shape (H, W, 3) | |
c_x (float): Bounding box center x coordinate in the original image. | |
c_y (float): Bounding box center y coordinate in the original image. | |
bb_width (float): Bounding box width. | |
bb_height (float): Bounding box height. | |
patch_width (float): Output box width. | |
patch_height (float): Output box height. | |
do_flip (bool): Whether to flip image or not. | |
scale (float): Rescaling factor for the bounding box (augmentation). | |
rot (float): Random rotation applied to the box. | |
Returns: | |
img_patch (np.array): Cropped image patch of shape (patch_height, patch_height, 3) | |
trans (np.array): Transformation matrix. | |
""" | |
img_height, img_width, img_channels = img.shape | |
if do_flip: | |
img = img[:, ::-1, :] | |
c_x = img_width - c_x - 1 | |
trans = gen_trans_from_patch_cv(c_x, c_y, bb_width, bb_height, patch_width, patch_height, scale, rot) | |
#img_patch = cv2.warpAffine(img, trans, (int(patch_width), int(patch_height)), flags=cv2.INTER_LINEAR) | |
# skimage | |
center = np.zeros(2) | |
center[0] = c_x | |
center[1] = c_y | |
res = np.zeros(2) | |
res[0] = patch_width | |
res[1] = patch_height | |
# assumes bb_width = bb_height | |
# assumes patch_width = patch_height | |
assert bb_width == bb_height, f'{bb_width=} != {bb_height=}' | |
assert patch_width == patch_height, f'{patch_width=} != {patch_height=}' | |
scale1 = scale*bb_width/200. | |
# Upper left point | |
ul = np.array(transform([1, 1], center, scale1, res, invert=1, as_int=False)) - 1 | |
# Bottom right point | |
br = np.array(transform([res[0] + 1, | |
res[1] + 1], center, scale1, res, invert=1, as_int=False)) - 1 | |
# Padding so that when rotated proper amount of context is included | |
try: | |
pad = int(np.linalg.norm(br - ul) / 2 - float(br[1] - ul[1]) / 2) + 1 | |
except: | |
breakpoint() | |
if not rot == 0: | |
ul -= pad | |
br += pad | |
if False: | |
# Old way of cropping image | |
ul_int = ul.astype(int) | |
br_int = br.astype(int) | |
new_shape = [br_int[1] - ul_int[1], br_int[0] - ul_int[0]] | |
if len(img.shape) > 2: | |
new_shape += [img.shape[2]] | |
new_img = np.zeros(new_shape) | |
# Range to fill new array | |
new_x = max(0, -ul_int[0]), min(br_int[0], len(img[0])) - ul_int[0] | |
new_y = max(0, -ul_int[1]), min(br_int[1], len(img)) - ul_int[1] | |
# Range to sample from original image | |
old_x = max(0, ul_int[0]), min(len(img[0]), br_int[0]) | |
old_y = max(0, ul_int[1]), min(len(img), br_int[1]) | |
new_img[new_y[0]:new_y[1], new_x[0]:new_x[1]] = img[old_y[0]:old_y[1], | |
old_x[0]:old_x[1]] | |
# New way of cropping image | |
new_img = crop_img(img, ul, br, border_mode=border_mode, border_value=border_value).astype(np.float32) | |
# print(f'{new_img.shape=}') | |
# print(f'{new_img1.shape=}') | |
# print(f'{np.allclose(new_img, new_img1)=}') | |
# print(f'{img.dtype=}') | |
if not rot == 0: | |
# Remove padding | |
new_img = rotate(new_img, rot) # scipy.misc.imrotate(new_img, rot) | |
new_img = new_img[pad:-pad, pad:-pad] | |
if new_img.shape[0] < 1 or new_img.shape[1] < 1: | |
print(f'{img.shape=}') | |
print(f'{new_img.shape=}') | |
print(f'{ul=}') | |
print(f'{br=}') | |
print(f'{pad=}') | |
print(f'{rot=}') | |
breakpoint() | |
# resize image | |
new_img = resize(new_img, res) # scipy.misc.imresize(new_img, res) | |
new_img = np.clip(new_img, 0, 255).astype(np.uint8) | |
return new_img, trans | |
def generate_image_patch_cv2(img: np.array, c_x: float, c_y: float, | |
bb_width: float, bb_height: float, | |
patch_width: float, patch_height: float, | |
do_flip: bool, scale: float, rot: float, | |
border_mode=cv2.BORDER_CONSTANT, border_value=0) -> Tuple[np.array, np.array]: | |
""" | |
Crop the input image and return the crop and the corresponding transformation matrix. | |
Args: | |
img (np.array): Input image of shape (H, W, 3) | |
c_x (float): Bounding box center x coordinate in the original image. | |
c_y (float): Bounding box center y coordinate in the original image. | |
bb_width (float): Bounding box width. | |
bb_height (float): Bounding box height. | |
patch_width (float): Output box width. | |
patch_height (float): Output box height. | |
do_flip (bool): Whether to flip image or not. | |
scale (float): Rescaling factor for the bounding box (augmentation). | |
rot (float): Random rotation applied to the box. | |
Returns: | |
img_patch (np.array): Cropped image patch of shape (patch_height, patch_height, 3) | |
trans (np.array): Transformation matrix. | |
""" | |
img_height, img_width, img_channels = img.shape | |
if do_flip: | |
img = img[:, ::-1, :] | |
c_x = img_width - c_x - 1 | |
trans = gen_trans_from_patch_cv(c_x, c_y, bb_width, bb_height, patch_width, patch_height, scale, rot) | |
img_patch = cv2.warpAffine(img, trans, (int(patch_width), int(patch_height)), | |
flags=cv2.INTER_LINEAR, | |
borderMode=border_mode, | |
borderValue=border_value, | |
) | |
# Force borderValue=cv2.BORDER_CONSTANT for alpha channel | |
if (img.shape[2] == 4) and (border_mode != cv2.BORDER_CONSTANT): | |
img_patch[:,:,3] = cv2.warpAffine(img[:,:,3], trans, (int(patch_width), int(patch_height)), | |
flags=cv2.INTER_LINEAR, | |
borderMode=cv2.BORDER_CONSTANT, | |
) | |
return img_patch, trans | |
def convert_cvimg_to_tensor(cvimg: np.array): | |
""" | |
Convert image from HWC to CHW format. | |
Args: | |
cvimg (np.array): Image of shape (H, W, 3) as loaded by OpenCV. | |
Returns: | |
np.array: Output image of shape (3, H, W). | |
""" | |
# from h,w,c(OpenCV) to c,h,w | |
img = cvimg.copy() | |
img = np.transpose(img, (2, 0, 1)) | |
# from int to float | |
img = img.astype(np.float32) | |
return img | |
def fliplr_params(smpl_params: Dict, has_smpl_params: Dict) -> Tuple[Dict, Dict]: | |
""" | |
Flip SMPL parameters when flipping the image. | |
Args: | |
smpl_params (Dict): SMPL parameter annotations. | |
has_smpl_params (Dict): Whether SMPL annotations are valid. | |
Returns: | |
Dict, Dict: Flipped SMPL parameters and valid flags. | |
""" | |
global_orient = smpl_params['global_orient'].copy() | |
body_pose = smpl_params['body_pose'].copy() | |
betas = smpl_params['betas'].copy() | |
has_global_orient = has_smpl_params['global_orient'].copy() | |
has_body_pose = has_smpl_params['body_pose'].copy() | |
has_betas = has_smpl_params['betas'].copy() | |
body_pose_permutation = [6, 7, 8, 3, 4, 5, 9, 10, 11, 15, 16, 17, 12, 13, | |
14 ,18, 19, 20, 24, 25, 26, 21, 22, 23, 27, 28, 29, 33, | |
34, 35, 30, 31, 32, 36, 37, 38, 42, 43, 44, 39, 40, 41, | |
45, 46, 47, 51, 52, 53, 48, 49, 50, 57, 58, 59, 54, 55, | |
56, 63, 64, 65, 60, 61, 62, 69, 70, 71, 66, 67, 68] | |
body_pose_permutation = body_pose_permutation[:len(body_pose)] | |
body_pose_permutation = [i-3 for i in body_pose_permutation] | |
body_pose = body_pose[body_pose_permutation] | |
global_orient[1::3] *= -1 | |
global_orient[2::3] *= -1 | |
body_pose[1::3] *= -1 | |
body_pose[2::3] *= -1 | |
smpl_params = {'global_orient': global_orient.astype(np.float32), | |
'body_pose': body_pose.astype(np.float32), | |
'betas': betas.astype(np.float32) | |
} | |
has_smpl_params = {'global_orient': has_global_orient, | |
'body_pose': has_body_pose, | |
'betas': has_betas | |
} | |
return smpl_params, has_smpl_params | |
def fliplr_keypoints(joints: np.array, width: float, flip_permutation: List[int]) -> np.array: | |
""" | |
Flip 2D or 3D keypoints. | |
Args: | |
joints (np.array): Array of shape (N, 3) or (N, 4) containing 2D or 3D keypoint locations and confidence. | |
flip_permutation (List): Permutation to apply after flipping. | |
Returns: | |
np.array: Flipped 2D or 3D keypoints with shape (N, 3) or (N, 4) respectively. | |
""" | |
joints = joints.copy() | |
# Flip horizontal | |
joints[:, 0] = width - joints[:, 0] - 1 | |
joints = joints[flip_permutation, :] | |
return joints | |
def keypoint_3d_processing(keypoints_3d: np.array, flip_permutation: List[int], rot: float, do_flip: float) -> np.array: | |
""" | |
Process 3D keypoints (rotation/flipping). | |
Args: | |
keypoints_3d (np.array): Input array of shape (N, 4) containing the 3D keypoints and confidence. | |
flip_permutation (List): Permutation to apply after flipping. | |
rot (float): Random rotation applied to the keypoints. | |
do_flip (bool): Whether to flip keypoints or not. | |
Returns: | |
np.array: Transformed 3D keypoints with shape (N, 4). | |
""" | |
if do_flip: | |
keypoints_3d = fliplr_keypoints(keypoints_3d, 1, flip_permutation) | |
# in-plane rotation | |
rot_mat = np.eye(3) | |
if not rot == 0: | |
rot_rad = -rot * np.pi / 180 | |
sn,cs = np.sin(rot_rad), np.cos(rot_rad) | |
rot_mat[0,:2] = [cs, -sn] | |
rot_mat[1,:2] = [sn, cs] | |
keypoints_3d[:, :-1] = np.einsum('ij,kj->ki', rot_mat, keypoints_3d[:, :-1]) | |
# flip the x coordinates | |
keypoints_3d = keypoints_3d.astype('float32') | |
return keypoints_3d | |
def rot_aa(aa: np.array, rot: float) -> np.array: | |
""" | |
Rotate axis angle parameters. | |
Args: | |
aa (np.array): Axis-angle vector of shape (3,). | |
rot (np.array): Rotation angle in degrees. | |
Returns: | |
np.array: Rotated axis-angle vector. | |
""" | |
# pose parameters | |
R = np.array([[np.cos(np.deg2rad(-rot)), -np.sin(np.deg2rad(-rot)), 0], | |
[np.sin(np.deg2rad(-rot)), np.cos(np.deg2rad(-rot)), 0], | |
[0, 0, 1]]) | |
# find the rotation of the body in camera frame | |
per_rdg, _ = cv2.Rodrigues(aa) | |
# apply the global rotation to the global orientation | |
resrot, _ = cv2.Rodrigues(np.dot(R,per_rdg)) | |
aa = (resrot.T)[0] | |
return aa.astype(np.float32) | |
def smpl_param_processing(smpl_params: Dict, has_smpl_params: Dict, rot: float, do_flip: bool) -> Tuple[Dict, Dict]: | |
""" | |
Apply random augmentations to the SMPL parameters. | |
Args: | |
smpl_params (Dict): SMPL parameter annotations. | |
has_smpl_params (Dict): Whether SMPL annotations are valid. | |
rot (float): Random rotation applied to the keypoints. | |
do_flip (bool): Whether to flip keypoints or not. | |
Returns: | |
Dict, Dict: Transformed SMPL parameters and valid flags. | |
""" | |
if do_flip: | |
smpl_params, has_smpl_params = fliplr_params(smpl_params, has_smpl_params) | |
smpl_params['global_orient'] = rot_aa(smpl_params['global_orient'], rot) | |
return smpl_params, has_smpl_params | |
def get_example(img_path: str|np.ndarray, center_x: float, center_y: float, | |
width: float, height: float, | |
keypoints_2d: np.array, keypoints_3d: np.array, | |
smpl_params: Dict, has_smpl_params: Dict, | |
flip_kp_permutation: List[int], | |
patch_width: int, patch_height: int, | |
mean: np.array, std: np.array, | |
do_augment: bool, augm_config: CfgNode, | |
is_bgr: bool = True, | |
use_skimage_antialias: bool = False, | |
border_mode: int = cv2.BORDER_CONSTANT, | |
return_trans: bool = False) -> Tuple: | |
""" | |
Get an example from the dataset and (possibly) apply random augmentations. | |
Args: | |
img_path (str): Image filename | |
center_x (float): Bounding box center x coordinate in the original image. | |
center_y (float): Bounding box center y coordinate in the original image. | |
width (float): Bounding box width. | |
height (float): Bounding box height. | |
keypoints_2d (np.array): Array with shape (N,3) containing the 2D keypoints in the original image coordinates. | |
keypoints_3d (np.array): Array with shape (N,4) containing the 3D keypoints. | |
smpl_params (Dict): SMPL parameter annotations. | |
has_smpl_params (Dict): Whether SMPL annotations are valid. | |
flip_kp_permutation (List): Permutation to apply to the keypoints after flipping. | |
patch_width (float): Output box width. | |
patch_height (float): Output box height. | |
mean (np.array): Array of shape (3,) containing the mean for normalizing the input image. | |
std (np.array): Array of shape (3,) containing the std for normalizing the input image. | |
do_augment (bool): Whether to apply data augmentation or not. | |
aug_config (CfgNode): Config containing augmentation parameters. | |
Returns: | |
return img_patch, keypoints_2d, keypoints_3d, smpl_params, has_smpl_params, img_size | |
img_patch (np.array): Cropped image patch of shape (3, patch_height, patch_height) | |
keypoints_2d (np.array): Array with shape (N,3) containing the transformed 2D keypoints. | |
keypoints_3d (np.array): Array with shape (N,4) containing the transformed 3D keypoints. | |
smpl_params (Dict): Transformed SMPL parameters. | |
has_smpl_params (Dict): Valid flag for transformed SMPL parameters. | |
img_size (np.array): Image size of the original image. | |
""" | |
if isinstance(img_path, str): | |
# 1. load image | |
cvimg = cv2.imread(img_path, cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION) | |
if not isinstance(cvimg, np.ndarray): | |
raise IOError("Fail to read %s" % img_path) | |
elif isinstance(img_path, np.ndarray): | |
cvimg = img_path | |
else: | |
raise TypeError('img_path must be either a string or a numpy array') | |
img_height, img_width, img_channels = cvimg.shape | |
img_size = np.array([img_height, img_width]) | |
# 2. get augmentation params | |
if do_augment: | |
scale, rot, do_flip, do_extreme_crop, extreme_crop_lvl, color_scale, tx, ty = do_augmentation(augm_config) | |
else: | |
scale, rot, do_flip, do_extreme_crop, extreme_crop_lvl, color_scale, tx, ty = 1.0, 0, False, False, 0, [1.0, 1.0, 1.0], 0., 0. | |
if width < 1 or height < 1: | |
breakpoint() | |
if do_extreme_crop: | |
if extreme_crop_lvl == 0: | |
center_x1, center_y1, width1, height1 = extreme_cropping(center_x, center_y, width, height, keypoints_2d) | |
elif extreme_crop_lvl == 1: | |
center_x1, center_y1, width1, height1 = extreme_cropping_aggressive(center_x, center_y, width, height, keypoints_2d) | |
THRESH = 4 | |
if width1 < THRESH or height1 < THRESH: | |
# print(f'{do_extreme_crop=}') | |
# print(f'width: {width}, height: {height}') | |
# print(f'width1: {width1}, height1: {height1}') | |
# print(f'center_x: {center_x}, center_y: {center_y}') | |
# print(f'center_x1: {center_x1}, center_y1: {center_y1}') | |
# print(f'keypoints_2d: {keypoints_2d}') | |
# print(f'\n\n', flush=True) | |
# breakpoint() | |
pass | |
# print(f'skip ==> width1: {width1}, height1: {height1}, width: {width}, height: {height}') | |
else: | |
center_x, center_y, width, height = center_x1, center_y1, width1, height1 | |
center_x += width * tx | |
center_y += height * ty | |
# Process 3D keypoints | |
keypoints_3d = keypoint_3d_processing(keypoints_3d, flip_kp_permutation, rot, do_flip) | |
# 3. generate image patch | |
if use_skimage_antialias: | |
# Blur image to avoid aliasing artifacts | |
downsampling_factor = (patch_width / (width*scale)) | |
if downsampling_factor > 1.1: | |
cvimg = gaussian(cvimg, sigma=(downsampling_factor-1)/2, channel_axis=2, preserve_range=True, truncate=3.0) | |
img_patch_cv, trans = generate_image_patch_cv2(cvimg, | |
center_x, center_y, | |
width, height, | |
patch_width, patch_height, | |
do_flip, scale, rot, | |
border_mode=border_mode) | |
# img_patch_cv, trans = generate_image_patch_skimage(cvimg, | |
# center_x, center_y, | |
# width, height, | |
# patch_width, patch_height, | |
# do_flip, scale, rot, | |
# border_mode=border_mode) | |
image = img_patch_cv.copy() | |
if is_bgr: | |
image = image[:, :, ::-1] | |
img_patch_cv = image.copy() | |
img_patch = convert_cvimg_to_tensor(image) | |
smpl_params, has_smpl_params = smpl_param_processing(smpl_params, has_smpl_params, rot, do_flip) | |
# apply normalization | |
for n_c in range(min(img_channels, 3)): | |
img_patch[n_c, :, :] = np.clip(img_patch[n_c, :, :] * color_scale[n_c], 0, 255) | |
if mean is not None and std is not None: | |
img_patch[n_c, :, :] = (img_patch[n_c, :, :] - mean[n_c]) / std[n_c] | |
if do_flip: | |
keypoints_2d = fliplr_keypoints(keypoints_2d, img_width, flip_kp_permutation) | |
for n_jt in range(len(keypoints_2d)): | |
keypoints_2d[n_jt, 0:2] = trans_point2d(keypoints_2d[n_jt, 0:2], trans) | |
keypoints_2d[:, :-1] = keypoints_2d[:, :-1] / patch_width - 0.5 | |
if not return_trans: | |
return img_patch, keypoints_2d, keypoints_3d, smpl_params, has_smpl_params, img_size | |
else: | |
return img_patch, keypoints_2d, keypoints_3d, smpl_params, has_smpl_params, img_size, trans | |
def crop_to_hips(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array) -> Tuple: | |
""" | |
Extreme cropping: Crop the box up to the hip locations. | |
Args: | |
center_x (float): x coordinate of the bounding box center. | |
center_y (float): y coordinate of the bounding box center. | |
width (float): Bounding box width. | |
height (float): Bounding box height. | |
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations. | |
Returns: | |
center_x (float): x coordinate of the new bounding box center. | |
center_y (float): y coordinate of the new bounding box center. | |
width (float): New bounding box width. | |
height (float): New bounding box height. | |
""" | |
keypoints_2d = keypoints_2d.copy() | |
lower_body_keypoints = [10, 11, 13, 14, 19, 20, 21, 22, 23, 24, 25+0, 25+1, 25+4, 25+5] | |
keypoints_2d[lower_body_keypoints, :] = 0 | |
if keypoints_2d[:, -1].sum() > 1: | |
center, scale = get_bbox(keypoints_2d) | |
center_x = center[0] | |
center_y = center[1] | |
width = 1.1 * scale[0] | |
height = 1.1 * scale[1] | |
return center_x, center_y, width, height | |
def crop_to_shoulders(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array): | |
""" | |
Extreme cropping: Crop the box up to the shoulder locations. | |
Args: | |
center_x (float): x coordinate of the bounding box center. | |
center_y (float): y coordinate of the bounding box center. | |
width (float): Bounding box width. | |
height (float): Bounding box height. | |
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations. | |
Returns: | |
center_x (float): x coordinate of the new bounding box center. | |
center_y (float): y coordinate of the new bounding box center. | |
width (float): New bounding box width. | |
height (float): New bounding box height. | |
""" | |
keypoints_2d = keypoints_2d.copy() | |
lower_body_keypoints = [3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 19, 20, 21, 22, 23, 24] + [25 + i for i in [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 14, 15, 16]] | |
keypoints_2d[lower_body_keypoints, :] = 0 | |
center, scale = get_bbox(keypoints_2d) | |
if keypoints_2d[:, -1].sum() > 1: | |
center, scale = get_bbox(keypoints_2d) | |
center_x = center[0] | |
center_y = center[1] | |
width = 1.2 * scale[0] | |
height = 1.2 * scale[1] | |
return center_x, center_y, width, height | |
def crop_to_head(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array): | |
""" | |
Extreme cropping: Crop the box and keep on only the head. | |
Args: | |
center_x (float): x coordinate of the bounding box center. | |
center_y (float): y coordinate of the bounding box center. | |
width (float): Bounding box width. | |
height (float): Bounding box height. | |
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations. | |
Returns: | |
center_x (float): x coordinate of the new bounding box center. | |
center_y (float): y coordinate of the new bounding box center. | |
width (float): New bounding box width. | |
height (float): New bounding box height. | |
""" | |
keypoints_2d = keypoints_2d.copy() | |
lower_body_keypoints = [3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 19, 20, 21, 22, 23, 24] + [25 + i for i in [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 15, 16]] | |
keypoints_2d[lower_body_keypoints, :] = 0 | |
if keypoints_2d[:, -1].sum() > 1: | |
center, scale = get_bbox(keypoints_2d) | |
center_x = center[0] | |
center_y = center[1] | |
width = 1.3 * scale[0] | |
height = 1.3 * scale[1] | |
return center_x, center_y, width, height | |
def crop_torso_only(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array): | |
""" | |
Extreme cropping: Crop the box and keep on only the torso. | |
Args: | |
center_x (float): x coordinate of the bounding box center. | |
center_y (float): y coordinate of the bounding box center. | |
width (float): Bounding box width. | |
height (float): Bounding box height. | |
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations. | |
Returns: | |
center_x (float): x coordinate of the new bounding box center. | |
center_y (float): y coordinate of the new bounding box center. | |
width (float): New bounding box width. | |
height (float): New bounding box height. | |
""" | |
keypoints_2d = keypoints_2d.copy() | |
nontorso_body_keypoints = [0, 3, 4, 6, 7, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24] + [25 + i for i in [0, 1, 4, 5, 6, 7, 10, 11, 13, 17, 18]] | |
keypoints_2d[nontorso_body_keypoints, :] = 0 | |
if keypoints_2d[:, -1].sum() > 1: | |
center, scale = get_bbox(keypoints_2d) | |
center_x = center[0] | |
center_y = center[1] | |
width = 1.1 * scale[0] | |
height = 1.1 * scale[1] | |
return center_x, center_y, width, height | |
def crop_rightarm_only(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array): | |
""" | |
Extreme cropping: Crop the box and keep on only the right arm. | |
Args: | |
center_x (float): x coordinate of the bounding box center. | |
center_y (float): y coordinate of the bounding box center. | |
width (float): Bounding box width. | |
height (float): Bounding box height. | |
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations. | |
Returns: | |
center_x (float): x coordinate of the new bounding box center. | |
center_y (float): y coordinate of the new bounding box center. | |
width (float): New bounding box width. | |
height (float): New bounding box height. | |
""" | |
keypoints_2d = keypoints_2d.copy() | |
nonrightarm_body_keypoints = [0, 1, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24] + [25 + i for i in [0, 1, 2, 3, 4, 5, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]] | |
keypoints_2d[nonrightarm_body_keypoints, :] = 0 | |
if keypoints_2d[:, -1].sum() > 1: | |
center, scale = get_bbox(keypoints_2d) | |
center_x = center[0] | |
center_y = center[1] | |
width = 1.1 * scale[0] | |
height = 1.1 * scale[1] | |
return center_x, center_y, width, height | |
def crop_leftarm_only(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array): | |
""" | |
Extreme cropping: Crop the box and keep on only the left arm. | |
Args: | |
center_x (float): x coordinate of the bounding box center. | |
center_y (float): y coordinate of the bounding box center. | |
width (float): Bounding box width. | |
height (float): Bounding box height. | |
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations. | |
Returns: | |
center_x (float): x coordinate of the new bounding box center. | |
center_y (float): y coordinate of the new bounding box center. | |
width (float): New bounding box width. | |
height (float): New bounding box height. | |
""" | |
keypoints_2d = keypoints_2d.copy() | |
nonleftarm_body_keypoints = [0, 1, 2, 3, 4, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24] + [25 + i for i in [0, 1, 2, 3, 4, 5, 6, 7, 8, 12, 13, 14, 15, 16, 17, 18]] | |
keypoints_2d[nonleftarm_body_keypoints, :] = 0 | |
if keypoints_2d[:, -1].sum() > 1: | |
center, scale = get_bbox(keypoints_2d) | |
center_x = center[0] | |
center_y = center[1] | |
width = 1.1 * scale[0] | |
height = 1.1 * scale[1] | |
return center_x, center_y, width, height | |
def crop_legs_only(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array): | |
""" | |
Extreme cropping: Crop the box and keep on only the legs. | |
Args: | |
center_x (float): x coordinate of the bounding box center. | |
center_y (float): y coordinate of the bounding box center. | |
width (float): Bounding box width. | |
height (float): Bounding box height. | |
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations. | |
Returns: | |
center_x (float): x coordinate of the new bounding box center. | |
center_y (float): y coordinate of the new bounding box center. | |
width (float): New bounding box width. | |
height (float): New bounding box height. | |
""" | |
keypoints_2d = keypoints_2d.copy() | |
nonlegs_body_keypoints = [0, 1, 2, 3, 4, 5, 6, 7, 15, 16, 17, 18] + [25 + i for i in [6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18]] | |
keypoints_2d[nonlegs_body_keypoints, :] = 0 | |
if keypoints_2d[:, -1].sum() > 1: | |
center, scale = get_bbox(keypoints_2d) | |
center_x = center[0] | |
center_y = center[1] | |
width = 1.1 * scale[0] | |
height = 1.1 * scale[1] | |
return center_x, center_y, width, height | |
def crop_rightleg_only(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array): | |
""" | |
Extreme cropping: Crop the box and keep on only the right leg. | |
Args: | |
center_x (float): x coordinate of the bounding box center. | |
center_y (float): y coordinate of the bounding box center. | |
width (float): Bounding box width. | |
height (float): Bounding box height. | |
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations. | |
Returns: | |
center_x (float): x coordinate of the new bounding box center. | |
center_y (float): y coordinate of the new bounding box center. | |
width (float): New bounding box width. | |
height (float): New bounding box height. | |
""" | |
keypoints_2d = keypoints_2d.copy() | |
nonrightleg_body_keypoints = [0, 1, 2, 3, 4, 5, 6, 7, 8, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21] + [25 + i for i in [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]] | |
keypoints_2d[nonrightleg_body_keypoints, :] = 0 | |
if keypoints_2d[:, -1].sum() > 1: | |
center, scale = get_bbox(keypoints_2d) | |
center_x = center[0] | |
center_y = center[1] | |
width = 1.1 * scale[0] | |
height = 1.1 * scale[1] | |
return center_x, center_y, width, height | |
def crop_leftleg_only(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array): | |
""" | |
Extreme cropping: Crop the box and keep on only the left leg. | |
Args: | |
center_x (float): x coordinate of the bounding box center. | |
center_y (float): y coordinate of the bounding box center. | |
width (float): Bounding box width. | |
height (float): Bounding box height. | |
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations. | |
Returns: | |
center_x (float): x coordinate of the new bounding box center. | |
center_y (float): y coordinate of the new bounding box center. | |
width (float): New bounding box width. | |
height (float): New bounding box height. | |
""" | |
keypoints_2d = keypoints_2d.copy() | |
nonleftleg_body_keypoints = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 15, 16, 17, 18, 22, 23, 24] + [25 + i for i in [0, 1, 2, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]] | |
keypoints_2d[nonleftleg_body_keypoints, :] = 0 | |
if keypoints_2d[:, -1].sum() > 1: | |
center, scale = get_bbox(keypoints_2d) | |
center_x = center[0] | |
center_y = center[1] | |
width = 1.1 * scale[0] | |
height = 1.1 * scale[1] | |
return center_x, center_y, width, height | |
def full_body(keypoints_2d: np.array) -> bool: | |
""" | |
Check if all main body joints are visible. | |
Args: | |
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations. | |
Returns: | |
bool: True if all main body joints are visible. | |
""" | |
body_keypoints_openpose = [2, 3, 4, 5, 6, 7, 10, 11, 13, 14] | |
body_keypoints = [25 + i for i in [8, 7, 6, 9, 10, 11, 1, 0, 4, 5]] | |
return (np.maximum(keypoints_2d[body_keypoints, -1], keypoints_2d[body_keypoints_openpose, -1]) > 0).sum() == len(body_keypoints) | |
def upper_body(keypoints_2d: np.array): | |
""" | |
Check if all upper body joints are visible. | |
Args: | |
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations. | |
Returns: | |
bool: True if all main body joints are visible. | |
""" | |
lower_body_keypoints_openpose = [10, 11, 13, 14] | |
lower_body_keypoints = [25 + i for i in [1, 0, 4, 5]] | |
upper_body_keypoints_openpose = [0, 1, 15, 16, 17, 18] | |
upper_body_keypoints = [25+8, 25+9, 25+12, 25+13, 25+17, 25+18] | |
return ((keypoints_2d[lower_body_keypoints + lower_body_keypoints_openpose, -1] > 0).sum() == 0)\ | |
and ((keypoints_2d[upper_body_keypoints + upper_body_keypoints_openpose, -1] > 0).sum() >= 2) | |
def get_bbox(keypoints_2d: np.array, rescale: float = 1.2) -> Tuple: | |
""" | |
Get center and scale for bounding box from openpose detections. | |
Args: | |
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations. | |
rescale (float): Scale factor to rescale bounding boxes computed from the keypoints. | |
Returns: | |
center (np.array): Array of shape (2,) containing the new bounding box center. | |
scale (float): New bounding box scale. | |
""" | |
valid = keypoints_2d[:,-1] > 0 | |
valid_keypoints = keypoints_2d[valid][:,:-1] | |
center = 0.5 * (valid_keypoints.max(axis=0) + valid_keypoints.min(axis=0)) | |
bbox_size = (valid_keypoints.max(axis=0) - valid_keypoints.min(axis=0)) | |
# adjust bounding box tightness | |
scale = bbox_size | |
scale *= rescale | |
return center, scale | |
def extreme_cropping(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array) -> Tuple: | |
""" | |
Perform extreme cropping | |
Args: | |
center_x (float): x coordinate of bounding box center. | |
center_y (float): y coordinate of bounding box center. | |
width (float): bounding box width. | |
height (float): bounding box height. | |
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations. | |
rescale (float): Scale factor to rescale bounding boxes computed from the keypoints. | |
Returns: | |
center_x (float): x coordinate of bounding box center. | |
center_y (float): y coordinate of bounding box center. | |
width (float): bounding box width. | |
height (float): bounding box height. | |
""" | |
p = torch.rand(1).item() | |
if full_body(keypoints_2d): | |
if p < 0.7: | |
center_x, center_y, width, height = crop_to_hips(center_x, center_y, width, height, keypoints_2d) | |
elif p < 0.9: | |
center_x, center_y, width, height = crop_to_shoulders(center_x, center_y, width, height, keypoints_2d) | |
else: | |
center_x, center_y, width, height = crop_to_head(center_x, center_y, width, height, keypoints_2d) | |
elif upper_body(keypoints_2d): | |
if p < 0.9: | |
center_x, center_y, width, height = crop_to_shoulders(center_x, center_y, width, height, keypoints_2d) | |
else: | |
center_x, center_y, width, height = crop_to_head(center_x, center_y, width, height, keypoints_2d) | |
return center_x, center_y, max(width, height), max(width, height) | |
def extreme_cropping_aggressive(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array) -> Tuple: | |
""" | |
Perform aggressive extreme cropping | |
Args: | |
center_x (float): x coordinate of bounding box center. | |
center_y (float): y coordinate of bounding box center. | |
width (float): bounding box width. | |
height (float): bounding box height. | |
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations. | |
rescale (float): Scale factor to rescale bounding boxes computed from the keypoints. | |
Returns: | |
center_x (float): x coordinate of bounding box center. | |
center_y (float): y coordinate of bounding box center. | |
width (float): bounding box width. | |
height (float): bounding box height. | |
""" | |
p = torch.rand(1).item() | |
if full_body(keypoints_2d): | |
if p < 0.2: | |
center_x, center_y, width, height = crop_to_hips(center_x, center_y, width, height, keypoints_2d) | |
elif p < 0.3: | |
center_x, center_y, width, height = crop_to_shoulders(center_x, center_y, width, height, keypoints_2d) | |
elif p < 0.4: | |
center_x, center_y, width, height = crop_to_head(center_x, center_y, width, height, keypoints_2d) | |
elif p < 0.5: | |
center_x, center_y, width, height = crop_torso_only(center_x, center_y, width, height, keypoints_2d) | |
elif p < 0.6: | |
center_x, center_y, width, height = crop_rightarm_only(center_x, center_y, width, height, keypoints_2d) | |
elif p < 0.7: | |
center_x, center_y, width, height = crop_leftarm_only(center_x, center_y, width, height, keypoints_2d) | |
elif p < 0.8: | |
center_x, center_y, width, height = crop_legs_only(center_x, center_y, width, height, keypoints_2d) | |
elif p < 0.9: | |
center_x, center_y, width, height = crop_rightleg_only(center_x, center_y, width, height, keypoints_2d) | |
else: | |
center_x, center_y, width, height = crop_leftleg_only(center_x, center_y, width, height, keypoints_2d) | |
elif upper_body(keypoints_2d): | |
if p < 0.2: | |
center_x, center_y, width, height = crop_to_shoulders(center_x, center_y, width, height, keypoints_2d) | |
elif p < 0.4: | |
center_x, center_y, width, height = crop_to_head(center_x, center_y, width, height, keypoints_2d) | |
elif p < 0.6: | |
center_x, center_y, width, height = crop_torso_only(center_x, center_y, width, height, keypoints_2d) | |
elif p < 0.8: | |
center_x, center_y, width, height = crop_rightarm_only(center_x, center_y, width, height, keypoints_2d) | |
else: | |
center_x, center_y, width, height = crop_leftarm_only(center_x, center_y, width, height, keypoints_2d) | |
return center_x, center_y, max(width, height), max(width, height) | |