HMR2.0 / hmr2 /utils /pose_utils.py
brjathu
Adding HF files
29a229f
raw
history blame
12.1 kB
"""
Code adapted from: https://github.com/akanazawa/hmr/blob/master/src/benchmark/eval_util.py
"""
import torch
import numpy as np
from typing import Optional, Dict, List, Tuple
def compute_similarity_transform(S1: torch.Tensor, S2: torch.Tensor) -> torch.Tensor:
"""
Computes a similarity transform (sR, t) in a batched way that takes
a set of 3D points S1 (B, N, 3) closest to a set of 3D points S2 (B, N, 3),
where R is a 3x3 rotation matrix, t 3x1 translation, s scale.
i.e. solves the orthogonal Procrutes problem.
Args:
S1 (torch.Tensor): First set of points of shape (B, N, 3).
S2 (torch.Tensor): Second set of points of shape (B, N, 3).
Returns:
(torch.Tensor): The first set of points after applying the similarity transformation.
"""
batch_size = S1.shape[0]
S1 = S1.permute(0, 2, 1)
S2 = S2.permute(0, 2, 1)
# 1. Remove mean.
mu1 = S1.mean(dim=2, keepdim=True)
mu2 = S2.mean(dim=2, keepdim=True)
X1 = S1 - mu1
X2 = S2 - mu2
# 2. Compute variance of X1 used for scale.
var1 = (X1**2).sum(dim=(1,2))
# 3. The outer product of X1 and X2.
K = torch.matmul(X1, X2.permute(0, 2, 1))
# 4. Solution that Maximizes trace(R'K) is R=U*V', where U, V are singular vectors of K.
U, s, V = torch.svd(K)
Vh = V.permute(0, 2, 1)
# Construct Z that fixes the orientation of R to get det(R)=1.
Z = torch.eye(U.shape[1], device=U.device).unsqueeze(0).repeat(batch_size, 1, 1)
Z[:, -1, -1] *= torch.sign(torch.linalg.det(torch.matmul(U, Vh)))
# Construct R.
R = torch.matmul(torch.matmul(V, Z), U.permute(0, 2, 1))
# 5. Recover scale.
trace = torch.matmul(R, K).diagonal(offset=0, dim1=-1, dim2=-2).sum(dim=-1)
scale = (trace / var1).unsqueeze(dim=-1).unsqueeze(dim=-1)
# 6. Recover translation.
t = mu2 - scale*torch.matmul(R, mu1)
# 7. Error:
S1_hat = scale*torch.matmul(R, S1) + t
return S1_hat.permute(0, 2, 1)
def reconstruction_error(S1, S2) -> np.array:
"""
Computes the mean Euclidean distance of 2 set of points S1, S2 after performing Procrustes alignment.
Args:
S1 (torch.Tensor): First set of points of shape (B, N, 3).
S2 (torch.Tensor): Second set of points of shape (B, N, 3).
Returns:
(np.array): Reconstruction error.
"""
S1_hat = compute_similarity_transform(S1, S2)
re = torch.sqrt( ((S1_hat - S2)** 2).sum(dim=-1)).mean(dim=-1)
return re
def eval_pose(pred_joints, gt_joints) -> Tuple[np.array, np.array]:
"""
Compute joint errors in mm before and after Procrustes alignment.
Args:
pred_joints (torch.Tensor): Predicted 3D joints of shape (B, N, 3).
gt_joints (torch.Tensor): Ground truth 3D joints of shape (B, N, 3).
Returns:
Tuple[np.array, np.array]: Joint errors in mm before and after alignment.
"""
# Absolute error (MPJPE)
mpjpe = torch.sqrt(((pred_joints - gt_joints) ** 2).sum(dim=-1)).mean(dim=-1).cpu().numpy()
# Reconstuction_error
r_error = reconstruction_error(pred_joints, gt_joints).cpu().numpy()
return 1000 * mpjpe, 1000 * r_error
class Evaluator:
def __init__(self,
dataset_length: int,
keypoint_list: List,
pelvis_ind: int,
metrics: List = ['mode_mpjpe', 'mode_re', 'min_mpjpe', 'min_re'],
pck_thresholds: Optional[List] = None):
"""
Class used for evaluating trained models on different 3D pose datasets.
Args:
dataset_length (int): Total dataset length.
keypoint_list [List]: List of keypoints used for evaluation.
pelvis_ind (int): Index of pelvis keypoint; used for aligning the predictions and ground truth.
metrics [List]: List of evaluation metrics to record.
"""
self.dataset_length = dataset_length
self.keypoint_list = keypoint_list
self.pelvis_ind = pelvis_ind
self.metrics = metrics
for metric in self.metrics:
setattr(self, metric, np.zeros((dataset_length,)))
self.counter = 0
if pck_thresholds is None:
self.pck_evaluator = None
else:
self.pck_evaluator = EvaluatorPCK(pck_thresholds)
def log(self):
"""
Print current evaluation metrics
"""
if self.counter == 0:
print('Evaluation has not started')
return
print(f'{self.counter} / {self.dataset_length} samples')
if self.pck_evaluator is not None:
self.pck_evaluator.log()
for metric in self.metrics:
if metric in ['mode_mpjpe', 'mode_re', 'min_mpjpe', 'min_re']:
unit = 'mm'
else:
unit = ''
print(f'{metric}: {getattr(self, metric)[:self.counter].mean()} {unit}')
print('***')
def get_metrics_dict(self) -> Dict:
"""
Returns:
Dict: Dictionary of evaluation metrics.
"""
d1 = {metric: getattr(self, metric)[:self.counter].mean() for metric in self.metrics}
if self.pck_evaluator is not None:
d2 = self.pck_evaluator.get_metrics_dict()
d1.update(d2)
return d1
def __call__(self, output: Dict, batch: Dict, opt_output: Optional[Dict] = None):
"""
Evaluate current batch.
Args:
output (Dict): Regression output.
batch (Dict): Dictionary containing images and their corresponding annotations.
opt_output (Dict): Optimization output.
"""
if self.pck_evaluator is not None:
self.pck_evaluator(output, batch, opt_output)
pred_keypoints_3d = output['pred_keypoints_3d'].detach()
pred_keypoints_3d = pred_keypoints_3d[:,None,:,:]
batch_size = pred_keypoints_3d.shape[0]
num_samples = pred_keypoints_3d.shape[1]
gt_keypoints_3d = batch['keypoints_3d'][:, :, :-1].unsqueeze(1).repeat(1, num_samples, 1, 1)
# Align predictions and ground truth such that the pelvis location is at the origin
pred_keypoints_3d -= pred_keypoints_3d[:, :, [self.pelvis_ind]]
gt_keypoints_3d -= gt_keypoints_3d[:, :, [self.pelvis_ind]]
# Compute joint errors
mpjpe, re = eval_pose(pred_keypoints_3d.reshape(batch_size * num_samples, -1, 3)[:, self.keypoint_list], gt_keypoints_3d.reshape(batch_size * num_samples, -1 ,3)[:, self.keypoint_list])
mpjpe = mpjpe.reshape(batch_size, num_samples)
re = re.reshape(batch_size, num_samples)
# Compute 2d keypoint errors
pred_keypoints_2d = output['pred_keypoints_2d'].detach()
pred_keypoints_2d = pred_keypoints_2d[:,None,:,:]
gt_keypoints_2d = batch['keypoints_2d'][:,None,:,:].repeat(1, num_samples, 1, 1)
conf = gt_keypoints_2d[:, :, :, -1].clone()
kp_err = torch.nn.functional.mse_loss(
pred_keypoints_2d,
gt_keypoints_2d[:, :, :, :-1],
reduction='none'
).sum(dim=3)
kp_l2_loss = (conf * kp_err).mean(dim=2)
kp_l2_loss = kp_l2_loss.detach().cpu().numpy()
# Compute joint errors after optimization, if available.
if opt_output is not None:
opt_keypoints_3d = opt_output['model_joints']
opt_keypoints_3d -= opt_keypoints_3d[:, [self.pelvis_ind]]
opt_mpjpe, opt_re = eval_pose(opt_keypoints_3d[:, self.keypoint_list], gt_keypoints_3d[:, 0, self.keypoint_list])
# The 0-th sample always corresponds to the mode
if hasattr(self, 'mode_mpjpe'):
mode_mpjpe = mpjpe[:, 0]
self.mode_mpjpe[self.counter:self.counter+batch_size] = mode_mpjpe
if hasattr(self, 'mode_re'):
mode_re = re[:, 0]
self.mode_re[self.counter:self.counter+batch_size] = mode_re
if hasattr(self, 'mode_kpl2'):
mode_kpl2 = kp_l2_loss[:, 0]
self.mode_kpl2[self.counter:self.counter+batch_size] = mode_kpl2
if hasattr(self, 'min_mpjpe'):
min_mpjpe = mpjpe.min(axis=-1)
self.min_mpjpe[self.counter:self.counter+batch_size] = min_mpjpe
if hasattr(self, 'min_re'):
min_re = re.min(axis=-1)
self.min_re[self.counter:self.counter+batch_size] = min_re
if hasattr(self, 'min_kpl2'):
min_kpl2 = kp_l2_loss.min(axis=-1)
self.min_kpl2[self.counter:self.counter+batch_size] = min_kpl2
if hasattr(self, 'opt_mpjpe'):
self.opt_mpjpe[self.counter:self.counter+batch_size] = opt_mpjpe
if hasattr(self, 'opt_re'):
self.opt_re[self.counter:self.counter+batch_size] = opt_re
self.counter += batch_size
if hasattr(self, 'mode_mpjpe') and hasattr(self, 'mode_re'):
return {
'mode_mpjpe': mode_mpjpe,
'mode_re': mode_re,
}
else:
return {}
class EvaluatorPCK:
def __init__(self, thresholds: List = [0.05, 0.1, 0.2, 0.3, 0.4, 0.5],):
"""
Class used for evaluating trained models on different 3D pose datasets.
Args:
thresholds [List]: List of PCK thresholds to evaluate.
metrics [List]: List of evaluation metrics to record.
"""
self.thresholds = thresholds
self.pred_kp_2d = []
self.gt_kp_2d = []
self.gt_conf_2d = []
self.counter = 0
def log(self):
"""
Print current evaluation metrics
"""
if self.counter == 0:
print('Evaluation has not started')
return
print(f'{self.counter} samples')
metrics_dict = self.get_metrics_dict()
for metric in metrics_dict:
print(f'{metric}: {metrics_dict[metric]}')
print('***')
def get_metrics_dict(self) -> Dict:
"""
Returns:
Dict: Dictionary of evaluation metrics.
"""
pcks = self.compute_pcks()
metrics = {}
for thr, (acc,avg_acc,cnt) in zip(self.thresholds, pcks):
metrics.update({f'kp{i}_pck_{thr}': float(a) for i, a in enumerate(acc) if a>=0})
metrics.update({f'kpAvg_pck_{thr}': float(avg_acc)})
return metrics
def compute_pcks(self):
pred_kp_2d = np.concatenate(self.pred_kp_2d, axis=0)
gt_kp_2d = np.concatenate(self.gt_kp_2d, axis=0)
gt_conf_2d = np.concatenate(self.gt_conf_2d, axis=0)
assert pred_kp_2d.shape == gt_kp_2d.shape
assert pred_kp_2d[..., 0].shape == gt_conf_2d.shape
assert pred_kp_2d.shape[1] == 1 # num_samples
from mmpose.core.evaluation import keypoint_pck_accuracy
pcks = [
keypoint_pck_accuracy(
pred_kp_2d[:, 0, :, :],
gt_kp_2d[:, 0, :, :],
gt_conf_2d[:, 0, :]>0.5,
thr=thr,
normalize = np.ones((len(pred_kp_2d),2)) # Already in [-0.5,0.5] range. No need to normalize
)
for thr in self.thresholds
]
return pcks
def __call__(self, output: Dict, batch: Dict, opt_output: Optional[Dict] = None):
"""
Evaluate current batch.
Args:
output (Dict): Regression output.
batch (Dict): Dictionary containing images and their corresponding annotations.
opt_output (Dict): Optimization output.
"""
pred_keypoints_2d = output['pred_keypoints_2d'].detach()
num_samples = 1
batch_size = pred_keypoints_2d.shape[0]
pred_keypoints_2d = pred_keypoints_2d[:,None,:,:]
gt_keypoints_2d = batch['keypoints_2d'][:,None,:,:].repeat(1, num_samples, 1, 1)
self.pred_kp_2d.append(pred_keypoints_2d[:, :, :, :2].detach().cpu().numpy())
self.gt_conf_2d.append(gt_keypoints_2d[:, :, :, -1].detach().cpu().numpy())
self.gt_kp_2d.append(gt_keypoints_2d[:, :, :, :2].detach().cpu().numpy())
self.counter += batch_size