# Copyright (c) Facebook, Inc. and its affiliates. import torch from torch import nn from torch.nn import functional as F from torch.nn.modules.utils import _pair from detectron2.layers.wrappers import _NewEmptyTensorOp class TridentConv(nn.Module): def __init__( self, in_channels, out_channels, kernel_size, stride=1, paddings=0, dilations=1, groups=1, num_branch=1, test_branch_idx=-1, bias=False, norm=None, activation=None, ): super(TridentConv, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = _pair(kernel_size) self.num_branch = num_branch self.stride = _pair(stride) self.groups = groups self.with_bias = bias if isinstance(paddings, int): paddings = [paddings] * self.num_branch if isinstance(dilations, int): dilations = [dilations] * self.num_branch self.paddings = [_pair(padding) for padding in paddings] self.dilations = [_pair(dilation) for dilation in dilations] self.test_branch_idx = test_branch_idx self.norm = norm self.activation = activation assert len({self.num_branch, len(self.paddings), len(self.dilations)}) == 1 self.weight = nn.Parameter( torch.Tensor(out_channels, in_channels // groups, *self.kernel_size) ) if bias: self.bias = nn.Parameter(torch.Tensor(out_channels)) else: self.bias = None nn.init.kaiming_uniform_(self.weight, nonlinearity="relu") if self.bias is not None: nn.init.constant_(self.bias, 0) def forward(self, inputs): num_branch = self.num_branch if self.training or self.test_branch_idx == -1 else 1 assert len(inputs) == num_branch if inputs[0].numel() == 0: output_shape = [ (i + 2 * p - (di * (k - 1) + 1)) // s + 1 for i, p, di, k, s in zip( inputs[0].shape[-2:], self.padding, self.dilation, self.kernel_size, self.stride ) ] output_shape = [input[0].shape[0], self.weight.shape[0]] + output_shape return [_NewEmptyTensorOp.apply(input, output_shape) for input in inputs] if self.training or self.test_branch_idx == -1: outputs = [ F.conv2d(input, self.weight, self.bias, self.stride, padding, dilation, self.groups) for input, dilation, padding in zip(inputs, self.dilations, self.paddings) ] else: outputs = [ F.conv2d( inputs[0], self.weight, self.bias, self.stride, self.paddings[self.test_branch_idx], self.dilations[self.test_branch_idx], self.groups, ) ] if self.norm is not None: outputs = [self.norm(x) for x in outputs] if self.activation is not None: outputs = [self.activation(x) for x in outputs] return outputs def extra_repr(self): tmpstr = "in_channels=" + str(self.in_channels) tmpstr += ", out_channels=" + str(self.out_channels) tmpstr += ", kernel_size=" + str(self.kernel_size) tmpstr += ", num_branch=" + str(self.num_branch) tmpstr += ", test_branch_idx=" + str(self.test_branch_idx) tmpstr += ", stride=" + str(self.stride) tmpstr += ", paddings=" + str(self.paddings) tmpstr += ", dilations=" + str(self.dilations) tmpstr += ", groups=" + str(self.groups) tmpstr += ", bias=" + str(self.with_bias) return tmpstr