import os if 'PYOPENGL_PLATFORM' not in os.environ: os.environ['PYOPENGL_PLATFORM'] = 'egl' import torch from torchvision.utils import make_grid import numpy as np import pyrender import trimesh import cv2 import torch.nn.functional as F from .render_openpose import render_openpose def create_raymond_lights(): import pyrender thetas = np.pi * np.array([1.0 / 6.0, 1.0 / 6.0, 1.0 / 6.0]) phis = np.pi * np.array([0.0, 2.0 / 3.0, 4.0 / 3.0]) nodes = [] for phi, theta in zip(phis, thetas): xp = np.sin(theta) * np.cos(phi) yp = np.sin(theta) * np.sin(phi) zp = np.cos(theta) z = np.array([xp, yp, zp]) z = z / np.linalg.norm(z) x = np.array([-z[1], z[0], 0.0]) if np.linalg.norm(x) == 0: x = np.array([1.0, 0.0, 0.0]) x = x / np.linalg.norm(x) y = np.cross(z, x) matrix = np.eye(4) matrix[:3,:3] = np.c_[x,y,z] nodes.append(pyrender.Node( light=pyrender.DirectionalLight(color=np.ones(3), intensity=1.0), matrix=matrix )) return nodes class MeshRenderer: def __init__(self, cfg, faces=None): self.cfg = cfg self.focal_length = cfg.EXTRA.FOCAL_LENGTH self.img_res = cfg.MODEL.IMAGE_SIZE self.renderer = pyrender.OffscreenRenderer(viewport_width=self.img_res, viewport_height=self.img_res, point_size=1.0) self.camera_center = [self.img_res // 2, self.img_res // 2] self.faces = faces def visualize(self, vertices, camera_translation, images, focal_length=None, nrow=3, padding=2): images_np = np.transpose(images, (0,2,3,1)) rend_imgs = [] for i in range(vertices.shape[0]): fl = self.focal_length rend_img = torch.from_numpy(np.transpose(self.__call__(vertices[i], camera_translation[i], images_np[i], focal_length=fl, side_view=False), (2,0,1))).float() rend_img_side = torch.from_numpy(np.transpose(self.__call__(vertices[i], camera_translation[i], images_np[i], focal_length=fl, side_view=True), (2,0,1))).float() rend_imgs.append(torch.from_numpy(images[i])) rend_imgs.append(rend_img) rend_imgs.append(rend_img_side) rend_imgs = make_grid(rend_imgs, nrow=nrow, padding=padding) return rend_imgs def visualize_tensorboard(self, vertices, camera_translation, images, pred_keypoints, gt_keypoints, focal_length=None, nrow=5, padding=2): images_np = np.transpose(images, (0,2,3,1)) rend_imgs = [] pred_keypoints = np.concatenate((pred_keypoints, np.ones_like(pred_keypoints)[:, :, [0]]), axis=-1) pred_keypoints = self.img_res * (pred_keypoints + 0.5) gt_keypoints[:, :, :-1] = self.img_res * (gt_keypoints[:, :, :-1] + 0.5) keypoint_matches = [(1, 12), (2, 8), (3, 7), (4, 6), (5, 9), (6, 10), (7, 11), (8, 14), (9, 2), (10, 1), (11, 0), (12, 3), (13, 4), (14, 5)] for i in range(vertices.shape[0]): fl = self.focal_length rend_img = torch.from_numpy(np.transpose(self.__call__(vertices[i], camera_translation[i], images_np[i], focal_length=fl, side_view=False), (2,0,1))).float() rend_img_side = torch.from_numpy(np.transpose(self.__call__(vertices[i], camera_translation[i], images_np[i], focal_length=fl, side_view=True), (2,0,1))).float() body_keypoints = pred_keypoints[i, :25] extra_keypoints = pred_keypoints[i, -19:] for pair in keypoint_matches: body_keypoints[pair[0], :] = extra_keypoints[pair[1], :] pred_keypoints_img = render_openpose(255 * images_np[i].copy(), body_keypoints) / 255 body_keypoints = gt_keypoints[i, :25] extra_keypoints = gt_keypoints[i, -19:] for pair in keypoint_matches: if extra_keypoints[pair[1], -1] > 0 and body_keypoints[pair[0], -1] == 0: body_keypoints[pair[0], :] = extra_keypoints[pair[1], :] gt_keypoints_img = render_openpose(255*images_np[i].copy(), body_keypoints) / 255 rend_imgs.append(torch.from_numpy(images[i])) rend_imgs.append(rend_img) rend_imgs.append(rend_img_side) rend_imgs.append(torch.from_numpy(pred_keypoints_img).permute(2,0,1)) rend_imgs.append(torch.from_numpy(gt_keypoints_img).permute(2,0,1)) rend_imgs = make_grid(rend_imgs, nrow=nrow, padding=padding) return rend_imgs def __call__(self, vertices, camera_translation, image, focal_length=5000, text=None, resize=None, side_view=False, baseColorFactor=(1.0, 1.0, 0.9, 1.0), rot_angle=90): renderer = pyrender.OffscreenRenderer(viewport_width=image.shape[1], viewport_height=image.shape[0], point_size=1.0) material = pyrender.MetallicRoughnessMaterial( metallicFactor=0.0, alphaMode='OPAQUE', baseColorFactor=baseColorFactor) camera_translation[0] *= -1. mesh = trimesh.Trimesh(vertices.copy(), self.faces.copy()) if side_view: rot = trimesh.transformations.rotation_matrix( np.radians(rot_angle), [0, 1, 0]) mesh.apply_transform(rot) rot = trimesh.transformations.rotation_matrix( np.radians(180), [1, 0, 0]) mesh.apply_transform(rot) mesh = pyrender.Mesh.from_trimesh(mesh, material=material) scene = pyrender.Scene(bg_color=[0.0, 0.0, 0.0, 0.0], ambient_light=(0.3, 0.3, 0.3)) scene.add(mesh, 'mesh') camera_pose = np.eye(4) camera_pose[:3, 3] = camera_translation camera_center = [image.shape[1] / 2., image.shape[0] / 2.] camera = pyrender.IntrinsicsCamera(fx=focal_length, fy=focal_length, cx=camera_center[0], cy=camera_center[1]) scene.add(camera, pose=camera_pose) light_nodes = create_raymond_lights() for node in light_nodes: scene.add_node(node) color, rend_depth = renderer.render(scene, flags=pyrender.RenderFlags.RGBA) color = color.astype(np.float32) / 255.0 valid_mask = (color[:, :, -1] > 0)[:, :, np.newaxis] if not side_view: output_img = (color[:, :, :3] * valid_mask + (1 - valid_mask) * image) else: output_img = color[:, :, :3] if resize is not None: output_img = cv2.resize(output_img, resize) output_img = output_img.astype(np.float32) renderer.delete() return output_img