import numpy as np import torch from torch.nn import functional as F # from psbody.mesh.visibility import visibility_compute def uv_to_xyz_and_normals(verts, f, fmap, bmap, ftov): vn = estimate_vertex_normals(verts, f, ftov) pixels_to_set = torch.nonzero(fmap+1) x_to_set = pixels_to_set[:,0] y_to_set = pixels_to_set[:,1] b_coords = bmap[x_to_set, y_to_set, :] f_coords = fmap[x_to_set, y_to_set] v_ids = f[f_coords] points = (b_coords[:,0,None]*verts[:,v_ids[:,0]] + b_coords[:,1,None]*verts[:,v_ids[:,1]] + b_coords[:,2,None]*verts[:,v_ids[:,2]]) normals = (b_coords[:,0,None]*vn[:,v_ids[:,0]] + b_coords[:,1,None]*vn[:,v_ids[:,1]] + b_coords[:,2,None]*vn[:,v_ids[:,2]]) return points, normals, vn, f_coords def estimate_vertex_normals(v, f, ftov): face_normals = TriNormalsScaled(v, f) non_scaled_normals = torch.einsum('ij,bjk->bik', ftov, face_normals) norms = torch.sum(non_scaled_normals ** 2.0, 2) ** 0.5 norms[norms == 0] = 1.0 return torch.div(non_scaled_normals, norms[:,:,None]) def TriNormalsScaled(v, f): return torch.cross(_edges_for(v, f, 1, 0), _edges_for(v, f, 2, 0)) def _edges_for(v, f, cplus, cminus): return v[:,f[:,cplus]] - v[:,f[:,cminus]] def psbody_get_face_visibility(v, n, f, cams, normal_threshold=0.5): bn, nverts, _ = v.shape nfaces, _ = f.shape vis_f = np.zeros([bn, nfaces], dtype='float32') for i in range(bn): vis, n_dot_cam = visibility_compute(v=v[i], n=n[i], f=f, cams=cams) vis_v = (vis == 1) & (n_dot_cam > normal_threshold) vis_f[i] = np.all(vis_v[0,f],1) return vis_f def compute_uvsampler(vt, ft, tex_size=6): """ For this mesh, pre-computes the UV coordinates for F x T x T points. Returns F x T x T x 2 """ uv = obj2nmr_uvmap(ft, vt, tex_size=tex_size) uv = uv.reshape(-1, tex_size, tex_size, 2) return uv def obj2nmr_uvmap(ft, vt, tex_size=6): """ Converts obj uv_map to NMR uv_map (F x T x T x 2), where tex_size (T) is the sample rate on each face. """ # This is F x 3 x 2 uv_map_for_verts = vt[ft] # obj's y coordinate is [1-0], but image is [0-1] uv_map_for_verts[:, :, 1] = 1 - uv_map_for_verts[:, :, 1] # range [0, 1] -> [-1, 1] uv_map_for_verts = (2 * uv_map_for_verts) - 1 alpha = np.arange(tex_size, dtype=np.float) / (tex_size - 1) beta = np.arange(tex_size, dtype=np.float) / (tex_size - 1) import itertools # Barycentric coordinate values coords = np.stack([p for p in itertools.product(*[alpha, beta])]) # Compute alpha, beta (this is the same order as NMR) v2 = uv_map_for_verts[:, 2] v0v2 = uv_map_for_verts[:, 0] - uv_map_for_verts[:, 2] v1v2 = uv_map_for_verts[:, 1] - uv_map_for_verts[:, 2] # Interpolate the vertex uv values: F x 2 x T*2 uv_map = np.dstack([v0v2, v1v2]).dot(coords.T) + v2.reshape(-1, 2, 1) # F x T*2 x 2 -> F x T x T x 2 uv_map = np.transpose(uv_map, (0, 2, 1)).reshape(-1, tex_size, tex_size, 2) return uv_map