broadwell's picture
Upload 2 files
0f31c51 verified
import cv2
import numpy as np
import torch
import ttach as tta
from pytorch_grad_cam.activations_and_gradients import ActivationsAndGradients
from pytorch_grad_cam.utils.svd_on_activations import get_2d_projection
class BaseCAM:
def __init__(self,
model,
target_layers,
use_cuda=False,
reshape_transform=None,
compute_input_gradient=False,
uses_gradients=True):
self.model = model.eval()
self.target_layers = target_layers
self.cuda = use_cuda
if self.cuda:
self.model = model.cuda()
else:
self.model = model.cpu()
self.reshape_transform = reshape_transform
self.compute_input_gradient = compute_input_gradient
self.uses_gradients = uses_gradients
self.activations_and_grads = ActivationsAndGradients(
self.model, target_layers, reshape_transform)
""" Get a vector of weights for every channel in the target layer.
Methods that return weights channels,
will typically need to only implement this function. """
def get_cam_weights(self,
input_tensor,
target_layers,
target_category,
activations,
grads):
raise Exception("Not Implemented")
def get_objective(self, input_encoding, target_encoding):
# input and target encoding should be normalized!
input_encoding_norm = input_encoding.norm(dim=-1, keepdim=True)
input_encoding = input_encoding / input_encoding_norm
target_encoding_norm = target_encoding.norm(dim=-1, keepdim=True)
target_encoding = target_encoding / target_encoding_norm
return input_encoding[0].dot(target_encoding[0])
def get_cam_image(self,
input_tensor,
target_layer,
target_category,
activations,
grads,
eigen_smooth=False):
weights = self.get_cam_weights(input_tensor, target_layer,
target_category, activations, grads)
weighted_activations = weights[:, :, None, None] * activations
if eigen_smooth:
cam = get_2d_projection(weighted_activations)
else:
cam = weighted_activations.sum(axis=1)
return cam
def forward(self, input_tensor, target_encoding, target_category=None, eigen_smooth=False):
if self.cuda:
input_tensor = input_tensor.cuda()
if self.compute_input_gradient:
input_tensor = torch.autograd.Variable(input_tensor,
requires_grad=True)
# output will be the image encoding
output = self.activations_and_grads(input_tensor)
if isinstance(target_category, int):
target_category = [target_category] * input_tensor.size(0)
if target_category is None:
target_category = np.argmax(output.cpu().data.numpy(), axis=-1)
else:
assert(len(target_category) == input_tensor.size(0))
if self.uses_gradients:
self.model.zero_grad()
#objective = self.get_objective(output, target_encoding)
output_norm = output.norm(dim=-1, keepdim=True)
output = output / output_norm
target_encoding_norm = target_encoding.norm(dim=-1, keepdim=True)
target_encoding = target_encoding / target_encoding_norm
objective = output[0].dot(target_encoding[0])
objective.backward(retain_graph=True)
# In most of the saliency attribution papers, the saliency is
# computed with a single target layer.
# Commonly it is the last convolutional layer.
# Here we support passing a list with multiple target layers.
# It will compute the saliency image for every image,
# and then aggregate them (with a default mean aggregation).
# This gives you more flexibility in case you just want to
# use all conv layers for example, all Batchnorm layers,
# or something else.
cam_per_layer = self.compute_cam_per_layer(input_tensor,
target_category,
eigen_smooth)
#return self.aggregate_multi_layers(cam_per_layer)
return cam_per_layer
def get_target_width_height(self, input_tensor):
width, height = input_tensor.size(-1), input_tensor.size(-2)
return width, height
def compute_cam_per_layer(
self,
input_tensor,
target_category,
eigen_smooth):
activations_list = [a.cpu().data.numpy()
for a in self.activations_and_grads.activations]
grads_list = [g.cpu().data.numpy()
for g in self.activations_and_grads.gradients]
target_size = self.get_target_width_height(input_tensor)
cam_per_target_layer = []
# Loop over the saliency image from every layer
for target_layer, layer_activations, layer_grads in \
zip(self.target_layers, activations_list, grads_list):
cam = self.get_cam_image(input_tensor,
target_layer,
target_category,
layer_activations,
layer_grads,
eigen_smooth)
cam = np.maximum(cam, 0) # works like mute the min-max scale in the function of scale_cam_image
scaled = cam#self.scale_cam_image(cam, target_size)
cam_per_target_layer.append(scaled[:, None, :])
return cam_per_target_layer
def aggregate_multi_layers(self, cam_per_target_layer):
cam_per_target_layer = np.concatenate(cam_per_target_layer, axis=1)
cam_per_target_layer = np.maximum(cam_per_target_layer, 0)
result = np.mean(cam_per_target_layer, axis=1)
return self.scale_cam_image(result)
def scale_cam_image(self, cam, target_size=None):
result = []
for img in cam:
img = img - np.min(img)
img = img / (1e-7 + np.max(img))
img = np.float32(img)
if target_size is not None:
img = cv2.resize(img, target_size)
result.append(img)
result = np.float32(result)
return result
def forward_augmentation_smoothing(self,
input_tensor,
target_category=None,
eigen_smooth=False):
transforms = tta.Compose(
[
tta.HorizontalFlip(),
tta.Multiply(factors=[0.9, 1, 1.1]),
]
)
cams = []
for transform in transforms:
augmented_tensor = transform.augment_image(input_tensor)
cam = self.forward(augmented_tensor,
target_category, eigen_smooth)
# The ttach library expects a tensor of size BxCxHxW
cam = cam[:, None, :, :]
cam = torch.from_numpy(cam)
cam = transform.deaugment_mask(cam)
# Back to numpy float32, HxW
cam = cam.numpy()
cam = cam[:, 0, :, :]
cams.append(cam)
cam = np.mean(np.float32(cams), axis=0)
return cam
def __call__(self,
input_tensor,
target_encoding,
target_category=None,
aug_smooth=False,
eigen_smooth=False):
# Smooth the CAM result with test time augmentation
if aug_smooth is True:
return self.forward_augmentation_smoothing(
input_tensor, target_category, eigen_smooth)
return self.forward(input_tensor, target_encoding,
target_category, eigen_smooth)
def __del__(self):
self.activations_and_grads.release()
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, exc_tb):
self.activations_and_grads.release()
if isinstance(exc_value, IndexError):
# Handle IndexError here...
print(
f"An exception occurred in CAM with block: {exc_type}. Message: {exc_value}")
return True