|
import cv2 |
|
import numpy as np |
|
import torch |
|
import ttach as tta |
|
from pytorch_grad_cam.activations_and_gradients import ActivationsAndGradients |
|
from pytorch_grad_cam.utils.svd_on_activations import get_2d_projection |
|
|
|
|
|
class BaseCAM: |
|
def __init__(self, |
|
model, |
|
target_layers, |
|
use_cuda=False, |
|
reshape_transform=None, |
|
compute_input_gradient=False, |
|
uses_gradients=True): |
|
self.model = model.eval() |
|
self.target_layers = target_layers |
|
self.cuda = use_cuda |
|
if self.cuda: |
|
self.model = model.cuda() |
|
else: |
|
self.model = model.cpu() |
|
self.reshape_transform = reshape_transform |
|
self.compute_input_gradient = compute_input_gradient |
|
self.uses_gradients = uses_gradients |
|
self.activations_and_grads = ActivationsAndGradients( |
|
self.model, target_layers, reshape_transform) |
|
|
|
""" Get a vector of weights for every channel in the target layer. |
|
Methods that return weights channels, |
|
will typically need to only implement this function. """ |
|
|
|
def get_cam_weights(self, |
|
input_tensor, |
|
target_layers, |
|
target_category, |
|
activations, |
|
grads): |
|
raise Exception("Not Implemented") |
|
|
|
def get_objective(self, input_encoding, target_encoding): |
|
|
|
|
|
input_encoding_norm = input_encoding.norm(dim=-1, keepdim=True) |
|
input_encoding = input_encoding / input_encoding_norm |
|
|
|
target_encoding_norm = target_encoding.norm(dim=-1, keepdim=True) |
|
target_encoding = target_encoding / target_encoding_norm |
|
|
|
return input_encoding[0].dot(target_encoding[0]) |
|
|
|
def get_cam_image(self, |
|
input_tensor, |
|
target_layer, |
|
target_category, |
|
activations, |
|
grads, |
|
eigen_smooth=False): |
|
weights = self.get_cam_weights(input_tensor, target_layer, |
|
target_category, activations, grads) |
|
weighted_activations = weights[:, :, None, None] * activations |
|
if eigen_smooth: |
|
cam = get_2d_projection(weighted_activations) |
|
else: |
|
cam = weighted_activations.sum(axis=1) |
|
|
|
return cam |
|
|
|
def forward(self, input_tensor, target_encoding, target_category=None, eigen_smooth=False): |
|
if self.cuda: |
|
input_tensor = input_tensor.cuda() |
|
|
|
if self.compute_input_gradient: |
|
input_tensor = torch.autograd.Variable(input_tensor, |
|
requires_grad=True) |
|
|
|
output = self.activations_and_grads(input_tensor) |
|
|
|
if isinstance(target_category, int): |
|
target_category = [target_category] * input_tensor.size(0) |
|
|
|
if target_category is None: |
|
target_category = np.argmax(output.cpu().data.numpy(), axis=-1) |
|
else: |
|
assert(len(target_category) == input_tensor.size(0)) |
|
|
|
|
|
if self.uses_gradients: |
|
self.model.zero_grad() |
|
|
|
output_norm = output.norm(dim=-1, keepdim=True) |
|
output = output / output_norm |
|
|
|
target_encoding_norm = target_encoding.norm(dim=-1, keepdim=True) |
|
target_encoding = target_encoding / target_encoding_norm |
|
|
|
objective = output[0].dot(target_encoding[0]) |
|
objective.backward(retain_graph=True) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cam_per_layer = self.compute_cam_per_layer(input_tensor, |
|
target_category, |
|
eigen_smooth) |
|
|
|
|
|
return cam_per_layer |
|
|
|
|
|
def get_target_width_height(self, input_tensor): |
|
width, height = input_tensor.size(-1), input_tensor.size(-2) |
|
return width, height |
|
|
|
def compute_cam_per_layer( |
|
self, |
|
input_tensor, |
|
target_category, |
|
eigen_smooth): |
|
activations_list = [a.cpu().data.numpy() |
|
for a in self.activations_and_grads.activations] |
|
grads_list = [g.cpu().data.numpy() |
|
for g in self.activations_and_grads.gradients] |
|
target_size = self.get_target_width_height(input_tensor) |
|
|
|
cam_per_target_layer = [] |
|
|
|
|
|
|
|
for target_layer, layer_activations, layer_grads in \ |
|
zip(self.target_layers, activations_list, grads_list): |
|
cam = self.get_cam_image(input_tensor, |
|
target_layer, |
|
target_category, |
|
layer_activations, |
|
layer_grads, |
|
eigen_smooth) |
|
cam = np.maximum(cam, 0) |
|
scaled = cam |
|
cam_per_target_layer.append(scaled[:, None, :]) |
|
|
|
return cam_per_target_layer |
|
|
|
def aggregate_multi_layers(self, cam_per_target_layer): |
|
cam_per_target_layer = np.concatenate(cam_per_target_layer, axis=1) |
|
cam_per_target_layer = np.maximum(cam_per_target_layer, 0) |
|
result = np.mean(cam_per_target_layer, axis=1) |
|
return self.scale_cam_image(result) |
|
|
|
def scale_cam_image(self, cam, target_size=None): |
|
result = [] |
|
for img in cam: |
|
img = img - np.min(img) |
|
img = img / (1e-7 + np.max(img)) |
|
img = np.float32(img) |
|
if target_size is not None: |
|
img = cv2.resize(img, target_size) |
|
result.append(img) |
|
result = np.float32(result) |
|
|
|
return result |
|
|
|
def forward_augmentation_smoothing(self, |
|
input_tensor, |
|
target_category=None, |
|
eigen_smooth=False): |
|
transforms = tta.Compose( |
|
[ |
|
tta.HorizontalFlip(), |
|
tta.Multiply(factors=[0.9, 1, 1.1]), |
|
] |
|
) |
|
cams = [] |
|
for transform in transforms: |
|
augmented_tensor = transform.augment_image(input_tensor) |
|
cam = self.forward(augmented_tensor, |
|
target_category, eigen_smooth) |
|
|
|
|
|
cam = cam[:, None, :, :] |
|
cam = torch.from_numpy(cam) |
|
cam = transform.deaugment_mask(cam) |
|
|
|
|
|
cam = cam.numpy() |
|
cam = cam[:, 0, :, :] |
|
cams.append(cam) |
|
|
|
cam = np.mean(np.float32(cams), axis=0) |
|
return cam |
|
|
|
def __call__(self, |
|
input_tensor, |
|
target_encoding, |
|
target_category=None, |
|
aug_smooth=False, |
|
eigen_smooth=False): |
|
|
|
|
|
if aug_smooth is True: |
|
return self.forward_augmentation_smoothing( |
|
input_tensor, target_category, eigen_smooth) |
|
|
|
return self.forward(input_tensor, target_encoding, |
|
target_category, eigen_smooth) |
|
|
|
def __del__(self): |
|
self.activations_and_grads.release() |
|
|
|
def __enter__(self): |
|
return self |
|
|
|
def __exit__(self, exc_type, exc_value, exc_tb): |
|
self.activations_and_grads.release() |
|
if isinstance(exc_value, IndexError): |
|
|
|
print( |
|
f"An exception occurred in CAM with block: {exc_type}. Message: {exc_value}") |
|
return True |
|
|