File size: 3,396 Bytes
ac66ae2
ad99c34
7465957
cbbb9fd
df44c11
083fde1
ada7179
251d88f
c8534fb
 
e92ef1c
 
df44c11
38576e5
df44c11
467c88a
df44c11
 
 
 
38576e5
76019db
df44c11
 
38576e5
df44c11
 
 
065dd39
76019db
df9a90e
483c87c
df44c11
ada7179
 
 
df44c11
ada7179
df44c11
ada7179
 
 
 
c8534fb
251d88f
 
df44c11
 
 
92146e5
ada7179
 
251d88f
cbbb9fd
251d88f
cbbb9fd
ada7179
cbbb9fd
ada7179
 
0fb434b
251d88f
ada7179
 
 
2b03f9f
ada7179
 
 
2b03f9f
e69ea59
df44c11
 
e92ef1c
ada7179
065dd39
a184b8b
 
 
2371111
835fa92
13e776a
 
94ca6da
 
13e776a
2371111
083fde1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import gradio as gr
import os, torch
from datasets import load_dataset
from huggingface_hub import HfApi, login
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline

# Fine-tune on NVidia A10G Large (sleep after 1 hour)

profile = "bstraehle"

action_1 = "Fine-tune pre-trained model"
action_2 = "Prompt fine-tuned model"

system_prompt = "You are a text to SQL query translator. Given a question in English, generate a SQL query based on the provided SCHEMA. Do not generate any additional text. SCHEMA: {schema}"
user_prompt = "What is the total trade value and average price for each trader and stock in the trade_history table?"
schema = "CREATE TABLE trade_history (id INT, trader_id INT, stock VARCHAR(255), price DECIMAL(5,2), quantity INT, trade_time TIMESTAMP);"

base_model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
dataset = "gretelai/synthetic_text_to_sql"

def prompt_model(model_id, system_prompt, user_prompt, schema):
    pipe = pipeline("text-generation", model=model_id, model_kwargs={"torch_dtype": torch.bfloat16}, device_map="auto")

    messages = [
      {"role": "system", "content": system_prompt.format(schema=schema)},
      {"role": "user", "content": user_prompt},
      {"role": "assistant", "content": ""}
    ]
  
    output = pipe(messages)
    
    return output[0]["generated_text"][-1]["content"]

def fine_tune_model(base_model_id):
    tokenizer = download_model(base_model_id)
    fine_tuned_model_id = upload_model(base_model_id, tokenizer)

    return fine_tuned_model_id
        
def download_model(base_model_id):
    tokenizer = AutoTokenizer.from_pretrained(base_model_id)
    model = AutoModelForCausalLM.from_pretrained(base_model_id)
    model.save_pretrained(base_model_id)

    return tokenizer

#def download_dataset(dataset):
#    ds = load_dataset(dataset)
#    return ""

def upload_model(base_model_id, tokenizer):
    fine_tuned_model_id = replace_profile(base_model_id)

    login(token=os.environ["HF_TOKEN"])

    api = HfApi()
    api.create_repo(repo_id=fine_tuned_model_id)
    api.upload_folder(
        folder_path=base_model_id,
        repo_id=fine_tuned_model_id)
    )

    tokenizer.push_to_hub(fine_tuned_model_id)

    return fine_tuned_model_id

def replace_profile(base_model_id):
    model_id = base_model_id[base_model_id.rfind('/')+1:]
    return f"{profile}/{model_id}"

def process(action, base_model_id, dataset, system_prompt, user_prompt, schema):
    if action == action_1:
        result = fine_tune_model(base_model_id)
    elif action == action_2:
        fine_tuned_model_id = replace_profile(base_model_id)
        result = prompt_model(fine_tuned_model_id, system_prompt, user_prompt, schema)
    
    return result

demo = gr.Interface(fn=process, 
                    inputs=[gr.Radio([action_1, action_2], label = "Action", value = action_1),
                            gr.Textbox(label = "Base Model ID", value = base_model_id, lines = 1),
                            gr.Textbox(label = "Dataset", value = dataset, lines = 1),
                            gr.Textbox(label = "System Prompt", value = system_prompt, lines = 2),
                            gr.Textbox(label = "User Prompt", value = user_prompt, lines = 2),
                            gr.Textbox(label = "Schema", value = schema, lines = 2)],
                    outputs=[gr.Textbox(label = "Completion")])
demo.launch()