Update app.py
Browse files
app.py
CHANGED
@@ -29,23 +29,23 @@ def process(action, base_model_name, ft_model_name, dataset_name, system_prompt,
|
|
29 |
def fine_tune_model(base_model_name, dataset_name):
|
30 |
# Load dataset
|
31 |
|
32 |
-
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
|
40 |
# Load model
|
41 |
|
42 |
-
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
|
50 |
# Pre-process dataset
|
51 |
|
@@ -53,26 +53,26 @@ def fine_tune_model(base_model_name, dataset_name):
|
|
53 |
model_inputs = tokenizer(examples["sql_prompt"], text_target=examples["sql"], max_length=512, padding="max_length", truncation=True)
|
54 |
return model_inputs
|
55 |
|
56 |
-
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
|
64 |
# Split dataset into training and validation sets
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
|
77 |
# Configure training arguments
|
78 |
|
@@ -120,10 +120,10 @@ def fine_tune_model(base_model_name, dataset_name):
|
|
120 |
|
121 |
api = HfApi()
|
122 |
api.create_repo(repo_id=FT_MODEL_NAME)
|
123 |
-
api.upload_folder(
|
124 |
-
|
125 |
-
|
126 |
-
)
|
127 |
|
128 |
tokenizer.push_to_hub(FT_MODEL_NAME)
|
129 |
|
|
|
29 |
def fine_tune_model(base_model_name, dataset_name):
|
30 |
# Load dataset
|
31 |
|
32 |
+
dataset = load_dataset(dataset_name)
|
33 |
|
34 |
+
print("### Dataset")
|
35 |
+
print(dataset)
|
36 |
+
print("### Example")
|
37 |
+
print(dataset["train"][:1])
|
38 |
+
print("###")
|
39 |
|
40 |
# Load model
|
41 |
|
42 |
+
model, tokenizer = load_model(base_model_name)
|
43 |
|
44 |
+
print("### Model")
|
45 |
+
print(model)
|
46 |
+
print("### Tokenizer")
|
47 |
+
print(tokenizer)
|
48 |
+
print("###")
|
49 |
|
50 |
# Pre-process dataset
|
51 |
|
|
|
53 |
model_inputs = tokenizer(examples["sql_prompt"], text_target=examples["sql"], max_length=512, padding="max_length", truncation=True)
|
54 |
return model_inputs
|
55 |
|
56 |
+
dataset = dataset.map(preprocess, batched=True)
|
57 |
|
58 |
+
print("### Pre-processed dataset")
|
59 |
+
print(dataset)
|
60 |
+
print("### Example")
|
61 |
+
print(dataset["train"][:1])
|
62 |
+
print("###")
|
63 |
|
64 |
# Split dataset into training and validation sets
|
65 |
|
66 |
+
#train_dataset = dataset["train"]
|
67 |
+
#test_dataset = dataset["test"]
|
68 |
+
train_dataset = dataset["train"].shuffle(seed=42).select(range(1000))
|
69 |
+
test_dataset = dataset["test"].shuffle(seed=42).select(range(100))
|
70 |
|
71 |
+
print("### Training dataset")
|
72 |
+
print(train_dataset)
|
73 |
+
print("### Validation dataset")
|
74 |
+
print(test_dataset)
|
75 |
+
print("###")
|
76 |
|
77 |
# Configure training arguments
|
78 |
|
|
|
120 |
|
121 |
api = HfApi()
|
122 |
api.create_repo(repo_id=FT_MODEL_NAME)
|
123 |
+
#api.upload_folder(
|
124 |
+
# folder_path="./output",
|
125 |
+
# repo_id="Meta-Llama-3.1-8B-Instruct-text-to-sql"
|
126 |
+
#)
|
127 |
|
128 |
tokenizer.push_to_hub(FT_MODEL_NAME)
|
129 |
|