Spaces:
Runtime error
Runtime error
from diffusers import AutoencoderKL, UNet2DConditionModel, StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, DPMSolverMultistepScheduler | |
import gradio as gr | |
import torch | |
from PIL import Image | |
import os | |
scheduler = DPMSolverMultistepScheduler( | |
beta_start=0.00085, | |
beta_end=0.012, | |
beta_schedule="scaled_linear", | |
num_train_timesteps=1000, | |
trained_betas=None, | |
predict_epsilon=True, | |
thresholding=False, | |
algorithm_type="dpmsolver++", | |
solver_type="midpoint", | |
lower_order_final=True, | |
) | |
class Model: | |
def __init__(self, name, path, prefix): | |
self.name = name | |
self.path = path | |
self.prefix = prefix | |
self.pipe_t2i = None | |
self.pipe_i2i = None | |
models = [ | |
Model("Stable-Diffusion-v1.4", "CompVis/stable-diffusion-v1-4", "The 1.4 version of official stable-diffusion"), | |
Model("Waifu", "hakurei/waifu-diffusion", "anime style"), | |
] | |
last_mode = "txt2img" | |
current_model = models[0] | |
current_model_path = current_model.path | |
auth_token = os.getenv("HUGGING_FACE_HUB_TOKEN") | |
print(f"Is CUDA available: {torch.cuda.is_available()}") | |
if torch.cuda.is_available(): | |
vae = AutoencoderKL.from_pretrained(current_model.path, subfolder="vae", torch_dtype=torch.float16, use_auth_token=auth_token) | |
for model in models: | |
try: | |
unet = UNet2DConditionModel.from_pretrained(model.path, subfolder="unet", torch_dtype=torch.float16, use_auth_token=auth_token) | |
model.pipe_t2i = StableDiffusionPipeline.from_pretrained(model.path, unet=unet, vae=vae, torch_dtype=torch.float16, scheduler=scheduler, use_auth_token=auth_token) | |
model.pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained(model.path, unet=unet, vae=vae, torch_dtype=torch.float16, scheduler=scheduler, use_auth_token=auth_token) | |
except: | |
models.remove(model) | |
pipe = models[0].pipe_t2i | |
pipe = pipe.to("cuda") | |
else: | |
vae = AutoencoderKL.from_pretrained(current_model.path, subfolder="vae", use_auth_token=auth_token) | |
for model in models: | |
try: | |
unet = UNet2DConditionModel.from_pretrained(model.path, subfolder="unet", use_auth_token=auth_token) | |
model.pipe_t2i = StableDiffusionPipeline.from_pretrained(model.path, unet=unet, vae=vae, scheduler=scheduler, use_auth_token=auth_token) | |
model.pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained(model.path, unet=unet, vae=vae, scheduler=scheduler, use_auth_token=auth_token) | |
except: | |
models.remove(model) | |
pipe = models[0].pipe_t2i | |
pipe = pipe.to("cpu") | |
device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶" | |
def inference(model_name, prompt, guidance, steps, width=512, height=512, seed=0, img=None, strength=0.5, neg_prompt=""): | |
global current_model | |
for model in models: | |
if model.name == model_name: | |
current_model = model | |
model_path = current_model.path | |
generator = torch.Generator('cuda' if torch.cuda.is_available() else 'cpu').manual_seed(seed) if seed != 0 else None | |
if img is not None: | |
return img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, width, height, generator) | |
else: | |
return txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, generator) | |
def txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, generator=None): | |
global last_mode | |
global pipe | |
global current_model_path | |
if model_path != current_model_path or last_mode != "txt2img": | |
current_model_path = model_path | |
pipe.to("cpu") | |
pipe = current_model.pipe_t2i | |
if torch.cuda.is_available(): | |
pipe = pipe.to("cuda") | |
last_mode = "txt2img" | |
prompt = current_model.prefix + prompt | |
result = pipe( | |
prompt, | |
negative_prompt = neg_prompt, | |
# num_images_per_prompt=n_images, | |
num_inference_steps = int(steps), | |
guidance_scale = guidance, | |
width = width, | |
height = height, | |
generator = generator) | |
return replace_nsfw_images(result) | |
def img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, width, height, generator=None): | |
global last_mode | |
global pipe | |
global current_model_path | |
if model_path != current_model_path or last_mode != "img2img": | |
current_model_path = model_path | |
pipe.to("cpu") | |
pipe = current_model.pipe_i2i | |
if torch.cuda.is_available(): | |
pipe = pipe.to("cuda") | |
last_mode = "img2img" | |
prompt = current_model.prefix + prompt | |
ratio = min(height / img.height, width / img.width) | |
img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS) | |
result = pipe( | |
prompt, | |
negative_prompt = neg_prompt, | |
# num_images_per_prompt=n_images, | |
init_image = img, | |
num_inference_steps = int(steps), | |
strength = strength, | |
guidance_scale = guidance, | |
width = width, | |
height = height, | |
generator = generator) | |
return replace_nsfw_images(result) | |
def replace_nsfw_images(results): | |
for i in range(len(results.images)): | |
if results.nsfw_content_detected[i]: | |
results.images[i] = Image.open("nsfw.png") | |
return results.images[0] | |
css = """ | |
<style> | |
.finetuned-diffusion-div { | |
text-align: center; | |
max-width: 700px; | |
margin: 0 auto; | |
font-family: 'IBM Plex Sans', sans-serif; | |
} | |
.finetuned-diffusion-div div { | |
display: inline-flex; | |
align-items: center; | |
gap: 0.8rem; | |
font-size: 1.75rem; | |
} | |
.finetuned-diffusion-div div h1 { | |
font-weight: 900; | |
margin-top: 15px; | |
margin-bottom: 15px; | |
text-align: center; | |
} | |
.finetuned-diffusion-div p { | |
margin-bottom: 10px; | |
font-size: 94%; | |
} | |
.finetuned-diffusion-div p a { | |
text-decoration: underline; | |
} | |
.tabs { | |
margin-top: 0px; | |
margin-bottom: 0px; | |
} | |
#gallery { | |
min-height: 20rem; | |
} | |
.container { | |
max-width: 1000px; | |
margin: auto; | |
padding-top: 1.5rem; | |
} | |
</style> | |
""" | |
with gr.Blocks(css=css) as demo: | |
gr.HTML( | |
f""" | |
<div class="finetuned-diffusion-div"> | |
<div> | |
<h1>Stable-Diffusion with DPM-Solver (fastest sampler for diffusion models) </h1> | |
</div> | |
<br> | |
<p> | |
❤️ Acknowledgement: Hardware resources of this demo are supported by HuggingFace 🤗 . Many thanks for the help! | |
</p> | |
<br> | |
<p> | |
This is a demo of sampling by DPM-Solver with two variants of Stable Diffusion models, including <a href="https://huggingface.co/CompVis/stable-diffusion-v1-4">Stable-Diffusion-v1.4</a> and <a href="https://huggingface.co/hakurei/waifu-diffusion">Waifu</a>. | |
</p> | |
<br> | |
<p> | |
<a href="https://github.com/LuChengTHU/dpm-solver">DPM-Solver</a> (Neurips 2022 Oral) is a fast high-order solver customized for diffusion ODEs, which can generate high-quality samples by diffusion models within only 10-25 steps. DPM-Solver has an analytical formulation and is very easy to use for all types of Gaussian diffusion models, and includes <a href="https://arxiv.org/abs/2010.02502">DDIM</a> as a first-order special case. | |
</p> | |
<p> | |
We use <a href="https://github.com/huggingface/diffusers">Diffusers</a> 🧨 to implement this demo, which currently supports the multistep DPM-Solver scheduler. For more details of DPM-Solver with Diffusers, check <a href="https://github.com/huggingface/diffusers/pull/1132">this pull request</a>. | |
</p> | |
<br> | |
<p> | |
Currently, the default sampler of stable-diffusion is <a href="https://arxiv.org/abs/2202.09778">PNDM</a>, which needs 50 steps to generate high-quality samples. However, DPM-Solver can generate high-quality samples within only <span style="font-weight: bold;">20-25</span> steps, and for some samples even within <span style="font-weight: bold;">10-15</span> steps. | |
</p> | |
<br> | |
<p> | |
Running on <b>{device}</b> | |
</p> | |
</div> | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(scale=55): | |
with gr.Group(): | |
model_name = gr.Dropdown(label="Model", choices=[m.name for m in models], value=current_model.name) | |
with gr.Row(): | |
prompt = gr.Textbox(label="Prompt", show_label=False, max_lines=2,placeholder="Enter prompt. Style applied automatically").style(container=False) | |
generate = gr.Button(value="Generate").style(rounded=(False, True, True, False)) | |
image_out = gr.Image(height=512) | |
# gallery = gr.Gallery( | |
# label="Generated images", show_label=False, elem_id="gallery" | |
# ).style(grid=[1], height="auto") | |
with gr.Column(scale=45): | |
with gr.Tab("Options"): | |
with gr.Group(): | |
neg_prompt = gr.Textbox(label="Negative prompt", placeholder="What to exclude from the image") | |
# n_images = gr.Slider(label="Images", value=1, minimum=1, maximum=4, step=1) | |
with gr.Row(): | |
guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=15) | |
steps = gr.Slider(label="Steps", value=25, minimum=2, maximum=100, step=1) | |
with gr.Row(): | |
width = gr.Slider(label="Width", value=512, minimum=64, maximum=1024, step=8) | |
height = gr.Slider(label="Height", value=512, minimum=64, maximum=1024, step=8) | |
seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1) | |
with gr.Tab("Image to image"): | |
with gr.Group(): | |
image = gr.Image(label="Image", height=256, tool="editor", type="pil") | |
strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5) | |
# model_name.change(lambda x: gr.update(visible = x == models[0].name), inputs=model_name, outputs=custom_model_group) | |
inputs = [model_name, prompt, guidance, steps, width, height, seed, image, strength, neg_prompt] | |
prompt.submit(inference, inputs=inputs, outputs=image_out) | |
generate.click(inference, inputs=inputs, outputs=image_out) | |
gr.Markdown(''' | |
Stable-diffusion Models by [CompVis](https://huggingface.co/CompVis) and [stabilityai](https://huggingface.co/stabilityai), Waifu-diffusion models by [@hakurei](https://huggingface.co/hakurei). Most of the code of this demo are copied from [@anzorq's fintuned-diffusion](https://huggingface.co/spaces/anzorq/finetuned_diffusion/tree/main) ❤️<br> | |
Space by [Cheng Lu](https://github.com/LuChengTHU). [![Twitter Follow](https://img.shields.io/twitter/follow/ChengLu05671218?label=%40ChengLu&style=social)](https://twitter.com/ChengLu05671218) | |
![visitors](https://visitor-badge.glitch.me/badge?page_id=LuChengTHU.dpmsolver_sdm) | |
''') | |
demo.queue(concurrency_count=1) | |
demo.launch(debug=False, share=False) |