Update app.py
Browse files
app.py
CHANGED
@@ -1,70 +1,17 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
4 |
-
import os
|
5 |
-
from threading import Thread
|
6 |
-
import spaces
|
7 |
|
8 |
-
|
|
|
9 |
|
10 |
-
#
|
11 |
-
|
12 |
-
|
13 |
-
)
|
14 |
-
|
15 |
-
terminators = [tok.eos_token_id]
|
16 |
|
17 |
-
#
|
18 |
-
|
19 |
-
|
20 |
-
print(f"Using GPU: {torch.cuda.get_device_name(device)}")
|
21 |
-
else:
|
22 |
-
device = torch.device("cpu")
|
23 |
-
print("Using CPU")
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
@spaces.GPU(duration=60)
|
29 |
-
def chat(message):
|
30 |
-
# Initialize chat history with the user's message
|
31 |
-
chat = [{"role": "user", "content": message}]
|
32 |
-
# Convert chat history to a format suitable for the model
|
33 |
-
messages = tok.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
|
34 |
-
# Tokenize the messages and move them to the appropriate device
|
35 |
-
model_inputs = tok([messages], return_tensors="pt").to(device)
|
36 |
-
# Initialize a TextIteratorStreamer for dynamic generation
|
37 |
-
streamer = TextIteratorStreamer(
|
38 |
-
tok, timeout=20.0, skip_prompt=True, skip_special_tokens=True
|
39 |
-
)
|
40 |
-
# Set generation parameters
|
41 |
-
generate_kwargs = {
|
42 |
-
**model_inputs,
|
43 |
-
"streamer": streamer,
|
44 |
-
"max_new_tokens": 256, # You can adjust this value if needed
|
45 |
-
"do_sample": True,
|
46 |
-
"temperature": 0.9,
|
47 |
-
"eos_token_id": terminators,
|
48 |
-
}
|
49 |
-
# Start model generation in a separate thread
|
50 |
-
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
51 |
-
t.start()
|
52 |
-
|
53 |
-
partial_text = ""
|
54 |
-
# Yield partially generated text until generation is complete
|
55 |
-
for new_text in streamer:
|
56 |
-
partial_text += new_text
|
57 |
-
yield partial_text
|
58 |
-
|
59 |
-
# Yield the final generated text
|
60 |
-
yield partial_text
|
61 |
-
|
62 |
-
|
63 |
-
demo = gr.Interface(
|
64 |
-
fn=chat,
|
65 |
-
inputs="text",
|
66 |
-
outputs=gr.Textbox(lines=5, label="Generated Text"),
|
67 |
-
title="Chat With LLMs",
|
68 |
-
description="Now Running [microsoft/Phi-3-mini-4k-instruct](https://huggingface.com/microsoft/Phi-3-mini-4k-instruct)",
|
69 |
-
)
|
70 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline
|
|
|
|
|
|
|
|
|
3 |
|
4 |
+
# Initialize the text generation pipeline
|
5 |
+
generator = pipeline("text-generation", model="microsoft/Phi-3-mini-4k-instruct", trust_remote_code=True)
|
6 |
|
7 |
+
# Define the function to generate text based on input prompt
|
8 |
+
def generate_text(prompt):
|
9 |
+
# Generate text based on the input prompt
|
10 |
+
generated_text = generator(prompt, max_length=100, num_return_sequences=1)[0]['generated_text']
|
11 |
+
return generated_text
|
|
|
12 |
|
13 |
+
# Create Gradio interface
|
14 |
+
prompt_input = gr.Textbox(lines=5, label="Input Prompt")
|
15 |
+
output_text = gr.Textbox(label="Generated Text")
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
gr.Interface(generate_text, prompt_input, output_text, title="Conversational AI", description="Engage in conversation with our AI.").launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|