camanalo1 commited on
Commit
9d34671
1 Parent(s): 3e339c6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +28 -15
app.py CHANGED
@@ -1,21 +1,34 @@
1
- import gradio as gr
2
  import torch
3
- from transformers import AutoModelForCausalLM, AutoTokenizer
4
 
5
- model = AutoModelForCausalLM.from_pretrained("microsoft/Phi-3-mini-4k-instruct", trust_remote_code=True)
 
 
 
 
 
 
 
6
  tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-4k-instruct")
7
 
8
- def chat(message):
9
- inputs = tokenizer.encode(message, return_tensors="pt", add_special_tokens=True)
10
- outputs = model.generate(inputs, max_length=50, do_sample=True)
11
- response = tokenizer.decode(outputs[0], skip_special_tokens=True)
12
- return response
13
 
14
- demo = gr.Interface(
15
- fn=chat,
16
- inputs="text",
17
- outputs="text",
18
- title="Chat With LLMs",
19
- description="Now Running [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct)",
20
  )
21
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
1
  import torch
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
3
 
4
+ torch.random.manual_seed(0)
5
+
6
+ model = AutoModelForCausalLM.from_pretrained(
7
+ "microsoft/Phi-3-mini-4k-instruct",
8
+ device_map="cuda",
9
+ torch_dtype="auto",
10
+ trust_remote_code=True,
11
+ )
12
  tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-4k-instruct")
13
 
14
+ messages = [
15
+ {"role": "user", "content": "Can you provide ways to eat combinations of bananas and dragonfruits?"},
16
+ {"role": "assistant", "content": "Sure! Here are some ways to eat bananas and dragonfruits together: 1. Banana and dragonfruit smoothie: Blend bananas and dragonfruits together with some milk and honey. 2. Banana and dragonfruit salad: Mix sliced bananas and dragonfruits together with some lemon juice and honey."},
17
+ {"role": "user", "content": "What about solving an 2x + 3 = 7 equation?"},
18
+ ]
19
 
20
+ pipe = pipeline(
21
+ "text-generation",
22
+ model=model,
23
+ tokenizer=tokenizer,
 
 
24
  )
25
+
26
+ generation_args = {
27
+ "max_new_tokens": 500,
28
+ "return_full_text": False,
29
+ "temperature": 0.0,
30
+ "do_sample": False,
31
+ }
32
+
33
+ output = pipe(messages, **generation_args)
34
+ print(output[0]['generated_text'])