Spaces:
Runtime error
Runtime error
File size: 10,354 Bytes
20b1f60 7de3203 20b1f60 7de3203 20b1f60 7e192c7 20b1f60 7e192c7 20b1f60 7e192c7 20b1f60 7e192c7 20b1f60 7e192c7 20b1f60 7e192c7 20b1f60 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
import os, json, requests, runpod
import math
import random
import traceback
import fairscale.nn.model_parallel.initialize as fs_init
import gradio as gr
import numpy as np
from safetensors.torch import load_file
import torch
import torch.distributed as dist
from torchvision.transforms.functional import to_pil_image
import models
from transport import Sampler, create_transport
from diffusers.models import AutoencoderKL
from transformers import AutoModel, AutoTokenizer
with torch.inference_mode():
path_type = "Linear" # ["Linear", "GVP", "VP"]
prediction = "velocity" # ["velocity", "score", "noise"]
loss_weight = None # [None, "velocity", "likelihood"]
sample_eps = None
train_eps = None
atol = 1e-6
rtol = 1e-3
reverse = None
likelihood = None
rank = 0
num_gpus = 1
ckpt = "/content/Lumina-T2X/models"
ema = True
dtype = torch.bfloat16 #["bf16", "fp32"]
os.environ["MASTER_PORT"] = str(8080)
os.environ["MASTER_ADDR"] = "127.0.0.1"
os.environ["RANK"] = str(rank)
os.environ["WORLD_SIZE"] = str(num_gpus)
dist.init_process_group("nccl")
fs_init.initialize_model_parallel(1)
torch.cuda.set_device(rank)
train_args = torch.load(os.path.join(ckpt, "model_args.pth"))
text_encoder = AutoModel.from_pretrained("4bit/gemma-2b", torch_dtype=dtype, device_map="cuda").eval()
cap_feat_dim = text_encoder.config.hidden_size
tokenizer = AutoTokenizer.from_pretrained("4bit/gemma-2b")
tokenizer.padding_side = "right"
vae = AutoencoderKL.from_pretrained((f"stabilityai/sd-vae-ft-{train_args.vae}" if train_args.vae != "sdxl" else "stabilityai/sdxl-vae"), torch_dtype=torch.float32).cuda()
model = models.__dict__[train_args.model](
qk_norm=train_args.qk_norm,
cap_feat_dim=cap_feat_dim,
)
model.eval().to("cuda", dtype=dtype)
ckpt = load_file(os.path.join(ckpt, f"consolidated{'_ema' if ema else ''}.{rank:02d}-of-{num_gpus:02d}.safetensors"), device="cpu",)
model.load_state_dict(ckpt, strict=True)
# Adapted from pipelines.StableDiffusionXLPipeline.encode_prompt
def encode_prompt(prompt_batch, text_encoder, tokenizer, proportion_empty_prompts, is_train=True):
captions = []
for caption in prompt_batch:
if random.random() < proportion_empty_prompts:
captions.append("")
elif isinstance(caption, str):
captions.append(caption)
elif isinstance(caption, (list, np.ndarray)):
# take a random caption if there are multiple
captions.append(random.choice(caption) if is_train else caption[0])
with torch.no_grad():
text_inputs = tokenizer(
captions,
padding=True,
pad_to_multiple_of=8,
max_length=256,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
prompt_masks = text_inputs.attention_mask
prompt_embeds = text_encoder(
input_ids=text_input_ids.cuda(),
attention_mask=prompt_masks.cuda(),
output_hidden_states=True,
).hidden_states[-2]
return prompt_embeds, prompt_masks
@torch.inference_mode()
def generate(input):
values = input["input"]
cap1 = values['cap1']
cap2 = values['cap2']
cap3 = values['cap3']
cap4 = values['cap4']
neg_cap = values['neg_cap']
resolution = values['resolution'] # ["2048x1024 (4x1 Grids)","2560x1024 (4x1 Grids)","3072x1024 (4x1 Grids)","1024x1024 (2x2 Grids)","1536x1536 (2x2 Grids)","2048x2048 (2x2 Grids)","1024x2048 (1x4 Grids)","1024x2560 (1x4 Grids)","1024x3072 (1x4 Grids)",]
num_sampling_steps = values['num_sampling_steps']
cfg_scale = values['cfg_scale']
solver = values['solver'] # ["euler", "midpoint", "rk4"]
t_shift = values['t_shift']
seed = values['seed']
scaling_method = values['scaling_method'] # ["Time-aware", "None"]
scaling_watershed = values['scaling_watershed']
proportional_attn = values['proportional_attn']
with torch.autocast("cuda", dtype):
try:
# begin sampler
transport = create_transport(
path_type,
prediction,
loss_weight,
train_eps,
sample_eps,
)
sampler = Sampler(transport)
sample_fn = sampler.sample_ode(
sampling_method=solver,
num_steps=num_sampling_steps,
atol=atol,
rtol=rtol,
reverse=reverse,
time_shifting_factor=t_shift,
)
# end sampler
do_extrapolation = "Extrapolation" in resolution
split = resolution.split(" ")[1].replace("(", "")
w_split, h_split = split.split("x")
resolution = resolution.split(" ")[0]
w, h = resolution.split("x")
w, h = int(w), int(h)
latent_w, latent_h = w // 8, h // 8
if int(seed) != 0:
torch.random.manual_seed(int(seed))
z = torch.randn([1, 4, latent_h, latent_w], device="cuda").to(dtype)
z = z.repeat(2, 1, 1, 1)
cap_list = [cap1, cap2, cap3, cap4]
global_cap = " ".join(cap_list)
with torch.no_grad():
if neg_cap != "":
cap_feats, cap_mask = encode_prompt(
cap_list + [neg_cap] + [global_cap], text_encoder, tokenizer, 0.0
)
else:
cap_feats, cap_mask = encode_prompt(
cap_list + [""] + [global_cap], text_encoder, tokenizer, 0.0
)
cap_mask = cap_mask.to(cap_feats.device)
model_kwargs = dict(
cap_feats=cap_feats[:-1],
cap_mask=cap_mask[:-1],
global_cap_feats=cap_feats[-1:],
global_cap_mask=cap_mask[-1:],
cfg_scale=cfg_scale,
h_split_num=int(h_split),
w_split_num=int(w_split),
)
if proportional_attn:
model_kwargs["proportional_attn"] = True
model_kwargs["base_seqlen"] = (train_args.image_size // 16) ** 2
else:
model_kwargs["proportional_attn"] = False
model_kwargs["base_seqlen"] = None
if do_extrapolation and scaling_method == "Time-aware":
model_kwargs["scale_factor"] = math.sqrt(w * h / train_args.image_size**2)
model_kwargs["scale_watershed"] = scaling_watershed
else:
model_kwargs["scale_factor"] = 1.0
model_kwargs["scale_watershed"] = 1.0
samples = sample_fn(z, model.forward_with_cfg, **model_kwargs)[-1]
samples = samples[:1]
factor = 0.18215 if train_args.vae != "sdxl" else 0.13025
samples = vae.decode(samples / factor).sample
samples = (samples + 1.0) / 2.0
samples.clamp_(0.0, 1.0)
img = to_pil_image(samples[0].float())
img.save("/content/out.png")
except Exception:
print(traceback.format_exc())
result = "/content/out.png"
try:
notify_uri = values['notify_uri']
del values['notify_uri']
notify_token = values['notify_token']
del values['notify_token']
discord_id = values['discord_id']
del values['discord_id']
if(discord_id == "discord_id"):
discord_id = os.getenv('com_camenduru_discord_id')
discord_channel = values['discord_channel']
del values['discord_channel']
if(discord_channel == "discord_channel"):
discord_channel = os.getenv('com_camenduru_discord_channel')
discord_token = values['discord_token']
del values['discord_token']
if(discord_token == "discord_token"):
discord_token = os.getenv('com_camenduru_discord_token')
job_id = values['job_id']
del values['job_id']
default_filename = os.path.basename(result)
with open(result, "rb") as file:
files = {default_filename: file.read()}
payload = {"content": f"{json.dumps(values)} <@{discord_id}>"}
response = requests.post(
f"https://discord.com/api/v9/channels/{discord_channel}/messages",
data=payload,
headers={"Authorization": f"Bot {discord_token}"},
files=files
)
response.raise_for_status()
result_url = response.json()['attachments'][0]['url']
notify_payload = {"jobId": job_id, "result": result_url, "status": "DONE"}
web_notify_uri = os.getenv('com_camenduru_web_notify_uri')
web_notify_token = os.getenv('com_camenduru_web_notify_token')
if(notify_uri == "notify_uri"):
requests.post(web_notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token})
else:
requests.post(web_notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token})
requests.post(notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": notify_token})
return {"jobId": job_id, "result": result_url, "status": "DONE"}
except Exception as e:
error_payload = {"jobId": job_id, "status": "FAILED"}
try:
if(notify_uri == "notify_uri"):
requests.post(web_notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token})
else:
requests.post(web_notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token})
requests.post(notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": notify_token})
except:
pass
return {"jobId": job_id, "result": f"FAILED: {str(e)}", "status": "FAILED"}
finally:
if os.path.exists(result):
os.remove(result)
runpod.serverless.start({"handler": generate}) |