Spaces:
Runtime error
Runtime error
import time | |
from openai.error import RateLimitError | |
from autogpt import token_counter | |
from autogpt.config import Config | |
from autogpt.llm_utils import create_chat_completion | |
from autogpt.logs import logger | |
cfg = Config() | |
def create_chat_message(role, content): | |
""" | |
Create a chat message with the given role and content. | |
Args: | |
role (str): The role of the message sender, e.g., "system", "user", or "assistant". | |
content (str): The content of the message. | |
Returns: | |
dict: A dictionary containing the role and content of the message. | |
""" | |
return {"role": role, "content": content} | |
def generate_context(prompt, relevant_memory, full_message_history, model): | |
current_context = [ | |
create_chat_message("system", prompt), | |
create_chat_message( | |
"system", f"The current time and date is {time.strftime('%c')}" | |
), | |
create_chat_message( | |
"system", | |
f"This reminds you of these events from your past:\n{relevant_memory}\n\n", | |
), | |
] | |
# Add messages from the full message history until we reach the token limit | |
next_message_to_add_index = len(full_message_history) - 1 | |
insertion_index = len(current_context) | |
# Count the currently used tokens | |
current_tokens_used = token_counter.count_message_tokens(current_context, model) | |
return ( | |
next_message_to_add_index, | |
current_tokens_used, | |
insertion_index, | |
current_context, | |
) | |
# TODO: Change debug from hardcode to argument | |
def chat_with_ai( | |
prompt, user_input, full_message_history, permanent_memory, token_limit | |
): | |
"""Interact with the OpenAI API, sending the prompt, user input, message history, | |
and permanent memory.""" | |
while True: | |
try: | |
""" | |
Interact with the OpenAI API, sending the prompt, user input, | |
message history, and permanent memory. | |
Args: | |
prompt (str): The prompt explaining the rules to the AI. | |
user_input (str): The input from the user. | |
full_message_history (list): The list of all messages sent between the | |
user and the AI. | |
permanent_memory (Obj): The memory object containing the permanent | |
memory. | |
token_limit (int): The maximum number of tokens allowed in the API call. | |
Returns: | |
str: The AI's response. | |
""" | |
model = cfg.fast_llm_model # TODO: Change model from hardcode to argument | |
# Reserve 1000 tokens for the response | |
logger.debug(f"Token limit: {token_limit}") | |
send_token_limit = token_limit - 1000 | |
relevant_memory = ( | |
"" | |
if len(full_message_history) == 0 | |
else permanent_memory.get_relevant(str(full_message_history[-9:]), 10) | |
) | |
logger.debug(f"Memory Stats: {permanent_memory.get_stats()}") | |
( | |
next_message_to_add_index, | |
current_tokens_used, | |
insertion_index, | |
current_context, | |
) = generate_context(prompt, relevant_memory, full_message_history, model) | |
while current_tokens_used > 2500: | |
# remove memories until we are under 2500 tokens | |
relevant_memory = relevant_memory[:-1] | |
( | |
next_message_to_add_index, | |
current_tokens_used, | |
insertion_index, | |
current_context, | |
) = generate_context( | |
prompt, relevant_memory, full_message_history, model | |
) | |
current_tokens_used += token_counter.count_message_tokens( | |
[create_chat_message("user", user_input)], model | |
) # Account for user input (appended later) | |
while next_message_to_add_index >= 0: | |
# print (f"CURRENT TOKENS USED: {current_tokens_used}") | |
message_to_add = full_message_history[next_message_to_add_index] | |
tokens_to_add = token_counter.count_message_tokens( | |
[message_to_add], model | |
) | |
if current_tokens_used + tokens_to_add > send_token_limit: | |
break | |
# Add the most recent message to the start of the current context, | |
# after the two system prompts. | |
current_context.insert( | |
insertion_index, full_message_history[next_message_to_add_index] | |
) | |
# Count the currently used tokens | |
current_tokens_used += tokens_to_add | |
# Move to the next most recent message in the full message history | |
next_message_to_add_index -= 1 | |
# Append user input, the length of this is accounted for above | |
current_context.extend([create_chat_message("user", user_input)]) | |
# Calculate remaining tokens | |
tokens_remaining = token_limit - current_tokens_used | |
# assert tokens_remaining >= 0, "Tokens remaining is negative. | |
# This should never happen, please submit a bug report at | |
# https://www.github.com/Torantulino/Auto-GPT" | |
# Debug print the current context | |
logger.debug(f"Token limit: {token_limit}") | |
logger.debug(f"Send Token Count: {current_tokens_used}") | |
logger.debug(f"Tokens remaining for response: {tokens_remaining}") | |
logger.debug("------------ CONTEXT SENT TO AI ---------------") | |
for message in current_context: | |
# Skip printing the prompt | |
if message["role"] == "system" and message["content"] == prompt: | |
continue | |
logger.debug(f"{message['role'].capitalize()}: {message['content']}") | |
logger.debug("") | |
logger.debug("----------- END OF CONTEXT ----------------") | |
# TODO: use a model defined elsewhere, so that model can contain | |
# temperature and other settings we care about | |
assistant_reply = create_chat_completion( | |
model=model, | |
messages=current_context, | |
max_tokens=tokens_remaining, | |
) | |
# Update full message history | |
full_message_history.append(create_chat_message("user", user_input)) | |
full_message_history.append( | |
create_chat_message("assistant", assistant_reply) | |
) | |
return assistant_reply | |
except RateLimitError: | |
# TODO: When we switch to langchain, this is built in | |
print("Error: ", "API Rate Limit Reached. Waiting 10 seconds...") | |
time.sleep(10) | |