Spaces:
Runtime error
Runtime error
"""Functions for counting the number of tokens in a message or string.""" | |
from __future__ import annotations | |
import tiktoken | |
from autogpt.logs import logger | |
def count_message_tokens( | |
messages: list[dict[str, str]], model: str = "gpt-3.5-turbo-0301" | |
) -> int: | |
""" | |
Returns the number of tokens used by a list of messages. | |
Args: | |
messages (list): A list of messages, each of which is a dictionary | |
containing the role and content of the message. | |
model (str): The name of the model to use for tokenization. | |
Defaults to "gpt-3.5-turbo-0301". | |
Returns: | |
int: The number of tokens used by the list of messages. | |
""" | |
try: | |
encoding = tiktoken.encoding_for_model(model) | |
except KeyError: | |
logger.warn("Warning: model not found. Using cl100k_base encoding.") | |
encoding = tiktoken.get_encoding("cl100k_base") | |
if model == "gpt-3.5-turbo": | |
# !Note: gpt-3.5-turbo may change over time. | |
# Returning num tokens assuming gpt-3.5-turbo-0301.") | |
return count_message_tokens(messages, model="gpt-3.5-turbo-0301") | |
elif model == "gpt-4": | |
# !Note: gpt-4 may change over time. Returning num tokens assuming gpt-4-0314.") | |
return count_message_tokens(messages, model="gpt-4-0314") | |
elif model == "gpt-3.5-turbo-0301": | |
tokens_per_message = ( | |
4 # every message follows <|start|>{role/name}\n{content}<|end|>\n | |
) | |
tokens_per_name = -1 # if there's a name, the role is omitted | |
elif model == "gpt-4-0314": | |
tokens_per_message = 3 | |
tokens_per_name = 1 | |
else: | |
raise NotImplementedError( | |
f"num_tokens_from_messages() is not implemented for model {model}.\n" | |
" See https://github.com/openai/openai-python/blob/main/chatml.md for" | |
" information on how messages are converted to tokens." | |
) | |
num_tokens = 0 | |
for message in messages: | |
num_tokens += tokens_per_message | |
for key, value in message.items(): | |
num_tokens += len(encoding.encode(value)) | |
if key == "name": | |
num_tokens += tokens_per_name | |
num_tokens += 3 # every reply is primed with <|start|>assistant<|message|> | |
return num_tokens | |
def count_string_tokens(string: str, model_name: str) -> int: | |
""" | |
Returns the number of tokens in a text string. | |
Args: | |
string (str): The text string. | |
model_name (str): The name of the encoding to use. (e.g., "gpt-3.5-turbo") | |
Returns: | |
int: The number of tokens in the text string. | |
""" | |
encoding = tiktoken.encoding_for_model(model_name) | |
return len(encoding.encode(string)) | |