File size: 11,655 Bytes
d4b107b
0ac786e
 
 
 
 
 
 
3d3ff49
d4b107b
8b6630d
e898bd8
9e722fb
440d6b7
9e722fb
3d3ff49
9e722fb
440d6b7
 
 
 
 
47661bd
9e722fb
e898bd8
9e722fb
ca866cd
9769005
ca866cd
9769005
 
ca866cd
e898bd8
 
ca866cd
 
 
e898bd8
9769005
440d6b7
 
d2774a4
b98f4ad
9769005
e898bd8
9769005
efea11e
b98f4ad
e898bd8
9769005
 
2920f00
0ac786e
14c8f51
b98f4ad
0ac786e
14c8f51
f7e87b9
d2774a4
0ac786e
2d9e081
ca866cd
f7e87b9
9e722fb
 
 
 
f7e87b9
 
9e722fb
 
f7e87b9
9e722fb
f7e87b9
9e722fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2871675
d2774a4
 
badcd8d
af8451f
55eafca
9e722fb
 
 
 
 
 
 
 
d2774a4
9e722fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d262ec1
9e722fb
 
 
 
d4b107b
f7e87b9
9e722fb
 
 
 
 
 
 
f7e87b9
 
 
 
 
 
 
d4b107b
f7e87b9
9e722fb
 
 
d4b107b
f7e87b9
9e722fb
 
 
 
f7e87b9
9e722fb
 
 
 
2d9e081
f7e87b9
 
 
 
 
 
dda0718
 
23d2264
 
 
 
 
 
 
9e722fb
 
 
 
0ac786e
440d6b7
af8451f
440d6b7
d2774a4
0ac786e
 
d2774a4
dda0718
440d6b7
d2774a4
b98f4ad
 
d2774a4
9e722fb
440d6b7
 
 
9e722fb
1a0450c
dda0718
 
 
23d2264
9e722fb
0ac786e
dda0718
 
 
9e722fb
efea11e
8ec53db
 
 
64e12f4
2920f00
d2774a4
7735671
9e722fb
7735671
 
0ac786e
7735671
 
 
 
a0fe987
b98f4ad
0ac786e
7735671
8ec53db
9e722fb
 
 
7735671
 
0ac786e
 
 
 
7735671
 
 
 
0ac786e
7735671
 
8ec53db
2920f00
9e722fb
 
 
0ac786e
 
 
 
9e722fb
 
 
 
0ac786e
9e722fb
 
 
2920f00
9e722fb
 
 
0ac786e
 
 
 
9e722fb
 
 
 
0ac786e
9e722fb
 
 
7735671
0ac786e
7735671
 
 
0ac786e
7735671
 
 
0ac786e
 
7735671
 
 
 
0ac786e
 
7735671
0ac786e
 
 
 
7735671
 
 
 
 
 
 
 
 
 
0ac786e
7735671
 
8ec53db
9e722fb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336


#             -----------------COPY OF NEW EDITION[app.py]-----------------

# check if still the case...........??*********************************************
# "The attention mask is not set and cannot be inferred from input because pad token is same as eos token. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results."


import time
import os
import spaces
import contextlib
import warnings
warnings.filterwarnings("ignore")
from pydub import AudioSegment

# If m4a audio, convert to wav (Python)
def convert_to_wav(audio_file):
    audio = AudioSegment.from_file(audio_file, format="m4a")
    wav_file = "temp.wav"
    audio.export(wav_file, format="wav")
    return wav_file

import torch
from transformers import pipeline, AutoProcessor, AutoModelForSpeechSeq2Seq


# Initialize processor and pipeline
processor = AutoProcessor.from_pretrained("NbAiLabBeta/nb-whisper-large")
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
torch_dtype = torch.float32

pipe = pipeline("automatic-speech-recognition", model="NbAiLabBeta/nb-whisper-large", device=device, torch_dtype=torch_dtype)

language = "no"
task = "transcribe"

@spaces.GPU(queue=True)
def transcribe_audio(audio_file):
    if audio_file.endswith(".m4a"):
        audio_file = convert_to_wav(audio_file)

    start_time = time.time()

    # forced_decoder_ids in the correct context
    forced_decoder_ids = processor.get_decoder_prompt_ids(language=language, task=task)

    with torch.no_grad():
        # CUDA within the function
        with torch.cuda.device(device) if torch.cuda.is_available() else contextlib.nullcontext():
            output = pipe(audio_file, chunk_length_s=30, generate_kwargs={"forced_decoder_ids": forced_decoder_ids})

    text = output["text"]
    end_time = time.time()
    output_time = end_time - start_time
    word_count = len(text.split())

    result = f"Time taken: {output_time:.2f} seconds\nNumber of words: {word_count}"

    return text, result


# [VERSION 3: full-on w/ 3 styles for summarization]
import nltk
from nltk.tokenize import word_tokenize, sent_tokenize
from nltk.corpus import stopwords
import networkx as nx
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import pandas as pd
import numpy as np
import re

nltk.download('punkt')
nltk.download('stopwords')

WHITESPACE_HANDLER = lambda k: re.sub('\s+', ' ', re.sub('\n+', ' ', k.strip()))

def clean_text(text):
    text = re.sub(r'https?:\/\/.*[\r\n]*', '', str(text), flags=re.MULTILINE)
    text = re.sub(r'\<a href', ' ', str(text))
    text = re.sub(r'&amp;', '', str(text))
    text = re.sub(r'\(s+', '(', str(text))
    text = re.sub(r's+\)', ')', str(text))
    text = re.sub(r'\(\)', '', str(text))
    text = re.sub(r'\s+', ' ', str(text))
    text = re.sub(r'[_"\-;%|+&=*%!?:#$@\[\]]', ' ', str(text))
    text = re.sub(r'<br />', ' ', str(text))
    text = re.sub(r'\'', '', str(text))
    text = re.sub(r'«', '', str(text))
    text = re.sub(r'»', '', str(text))
    text = re.sub(r'–', '-', str(text))
    text = re.sub(r'…', '.', str(text))
    text = re.sub(r'[^\x00-\x7F]+', ' ', str(text))
    return text

def preprocess_text(text):
    try:
        words = word_tokenize(text)
        stop_words = set(stopwords.words('norwegian'))
        words_without_stopwords = [word for word in words if word.lower() not in stop_words]
        processed_text = ' '.join(words_without_stopwords)
        return processed_text
    except Exception as e:
        st.error(f"Error during text preprocessing: {e}")
        return None

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

summarization_model = AutoModelForSeq2SeqLM.from_pretrained("t5-base", return_dict=True, torch_dtype=torch.float16)
summarization_tokenizer = AutoTokenizer.from_pretrained("t5-base")
summarization_model.to(device)

@spaces.GPU(queue=True)
def summarize_text(text):
    preprocessed_text = preprocess_text(text)
    if preprocessed_text is None:
        return None
    inputs = summarization_tokenizer([text], max_length=1024, return_tensors="pt", truncation=True)
    inputs = inputs.to(device)
    summary_ids = summarization_model.generate(inputs.input_ids, num_beams=5, max_length=150, early_stopping=True)
    summary = summarization_tokenizer.decode(summary_ids[0], skip_special_tokens=True)
    return summary

def build_similarity_matrix(sentences, stop_words):
    similarity_matrix = nx.Graph()
    for i, tokens_a in enumerate(sentences):
        for j, tokens_b in enumerate(sentences):
            if i != j:
                common_words = set(tokens_a) & set(tokens_b)
                similarity_matrix.add_edge(i, j, weight=len(common_words))
    return similarity_matrix

def graph_based_summary(text, num_paragraphs=3):
    sentences = text.strip().split(".")
    if len(sentences) < num_paragraphs:
        return sentences
    sentence_tokens = [word_tokenize(sent) for sent in sentences]
    stop_words = set(stopwords.words('norwegian'))
    filtered_tokens = [[word for word in tokens if word.lower() not in stop_words] for tokens in sentence_tokens]
    similarity_matrix = build_similarity_matrix(filtered_tokens, stop_words)

    scores = nx.pagerank(similarity_matrix)
    ranked_sentences = sorted(((scores[i], sent) for i, sent in enumerate(sentences)), reverse=True)
    summary = [sent for _, sent in ranked_sentences[:num_paragraphs]]
    return summary

def lex_rank_summary(text, num_paragraphs=3, threshold=0.1):
    sentences = nltk.sent_tokenize(text)
    if len(sentences) < num_paragraphs:
        return sentences
    stop_words = set(stopwords.words('norwegian'))
    vectorizer = TfidfVectorizer(stop_words=list(stop_words))
    X = vectorizer.fit_transform(sentences)
    similarity_matrix = cosine_similarity(X, X)


    for i in range(len(similarity_matrix)): # threshold
        for j in range(len(similarity_matrix[i])):
            if similarity_matrix[i][j] < threshold:
                similarity_matrix[i][j] = 0.0

    nx_graph = nx.from_numpy_array(similarity_matrix)
    scores = nx.pagerank(nx_graph)
    ranked_sentences = sorted(((scores[i], s) for i, s in enumerate(sentences)), reverse=True)
    summary = [ranked_sentences[i][1] for i in range(num_paragraphs)]
    return summary


def text_rank_summary(text, num_paragraphs=3):
    sentences = nltk.sent_tokenize(text)
    if len(sentences) < num_paragraphs:
        return sentences

    stop_words = set(stopwords.words('norwegian'))
    vectorizer = TfidfVectorizer(stop_words=list(stop_words))
    X = vectorizer.fit_transform(sentences)
    similarity_matrix = cosine_similarity(X, X)

    nx_graph = nx.from_numpy_array(similarity_matrix)  # graph, nodes (i.e sentences) & edges are similarity scores (is cool)
    scores = nx.pagerank(nx_graph) # PageRank algorithm, scoring sentences
    ranked_sentences = sorted(((scores[i], s) for i, s in enumerate(sentences)), reverse=True) # rank by PageRank scores

    summary = [ranked_sentences[i][1] for i in range(num_paragraphs)] # top sentences for summary
    return ' '.join(summary)


banner_html = """
<div style="text-align: center;">
    <img src="https://huggingface.co/spaces/camparchimedes/transcription_app/resolve/main/Olas%20AudioSwitch%20Shop.png" alt="Banner Image" width="100%" height="auto">
</div>
"""


import gradio as gr
from fpdf import FPDF
from PIL import Image

def save_to_pdf(text, summary):
    pdf = FPDF()
    pdf.add_page()
    pdf.set_font("Arial", size=12)

    if text:
        pdf.multi_cell(0, 10, "text:\n" + text)

    # paragraph space
    pdf.ln(10)

    if summary:
        pdf.multi_cell(0, 10, "Summary:\n" + summary)

    pdf_output_path = "transcription.pdf"
    pdf.output(pdf_output_path)
    return pdf_output_path



iface = gr.Interface(
    fn=transcribe_audio,
    inputs=gr.Audio(type="filepath"),
    outputs=gr.Textbox(label="Transcription"),
    title="SW Transcription App",
    description="Upload an audio file to get the text",
    theme="default",
    live=False
)


iface = gr.Blocks()

with iface:
    gr.HTML(banner_html)
    gr.Markdown("# Vi har nå muligheten til å oversette lydfiler til norsk skrift.")

    with gr.Tabs():

        with gr.TabItem("Transcription"):
            audio_input = gr.Audio(type="filepath")
            text_output = gr.Textbox(label="text")
            result_output = gr.Textbox(label="Time taken and Number of words")
            transcribe_button = gr.Button("Transcribe")

            transcribe_button.click(
                fn=transcribe_audio,
                inputs=[audio_input],
                outputs=[text_output, result_output]
            )


        with gr.TabItem("Summary_t1"):
            summary_output = gr.Textbox(label="Summary | Graph-based")
            summarize_button = gr.Button("Summarize")

            def summarize(text):
                if not text:
                    return "Warning: a text must be available."
                summary = graph_based_summary(text)
                return summary

            summarize_button.click(
                fn=summarize,
                inputs=[text_output],
                outputs=summary_output
            )

        with gr.TabItem("LexRank"):
            summary_output = gr.Textbox(label="Summary | LexRank")
            summarize_button = gr.Button("Summarize")

            def summarize(text):
                if not text:
                    return "Warning: a text must be available."
                summary = lex_rank_summary(text)
                return summary

            summarize_button.click(
                fn=summarize,
                inputs=[text_output],
                outputs=summary_output
            )

        with gr.TabItem("TextRank"):
            summary_output = gr.Textbox(label="Summary | TextRank")
            summarize_button = gr.Button("Summarize")

            def summarize(text):
                if not text:
                    return "Warning: a text must be available."
                summary = text_rank_summary(text)
                return summary

            summarize_button.click(
                fn=summarize,
                inputs=[text_output],
                outputs=summary_output
            )

        with gr.TabItem("Download PDF"):
            pdf_text_only = gr.Button("Download PDF with text Only")
            pdf_summary_only = gr.Button("Download PDF with Summary Only")
            pdf_both = gr.Button("Download PDF with Both")

            pdf_output_text_only = gr.File(label="Download PDF")
            pdf_output_summary_only = gr.File(label="Download PDF")
            pdf_output_both = gr.File(label="Download PDF")

            def generate_pdf_text_only(text):
                return save_to_pdf(text, "")

            def generate_pdf_summary_only(summary):
                return save_to_pdf("", summary)

            def generate_pdf_both(text, summary):
                return save_to_pdf(text, summary)

            pdf_text_only.click(
                fn=generate_pdf_text_only,
                inputs=[text_output],
                outputs=[pdf_output_text_only]
            )

            pdf_summary_only.click(
                fn=generate_pdf_summary_only,
                inputs=[summary_output],
                outputs=[pdf_output_summary_only]
            )

            pdf_both.click(
                fn=generate_pdf_both,
                inputs=[text_output, summary_output],
                outputs=[pdf_output_both]
            )

iface.launch(share=True, debug=True)