Spaces:
Build error
Build error
# app.py | |
import gradio as gr | |
import warnings | |
import torch | |
from transformers import pipeline, WhisperTokenizer, WhisperForConditionalGeneration, WhisperProcessor | |
warnings.filterwarnings("ignore") | |
# Load tokenizer and model | |
tokenizer = WhisperTokenizer.from_pretrained("NbAiLabBeta/nb-whisper-medium") | |
model = WhisperForConditionalGeneration.from_pretrained("NbAiLabBeta/nb-whisper-medium") | |
processor = WhisperProcessor.from_pretrained("NbAiLabBeta/nb-whisper-medium") | |
# Set up the device | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
torch_dtype = torch.float32 | |
# Initialize pipeline | |
asr = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, device=device, torch_dtype=torch_dtype) | |
def transcribe_audio(audio_file): | |
# Perform transcription | |
with torch.no_grad(): | |
output = asr(audio_file, chunk_length_s=28, generate_kwargs={"num_beams": 5, "task": "transcribe", "language": "no"}) | |
return output["text"] | |
# Create Gradio interface | |
iface = gr.Interface( | |
fn=transcribe_audio, | |
inputs=gr.Audio(type="filepath"), | |
outputs="text", | |
title="Audio Transcription App", | |
description="Upload an audio file to get the transcription", | |
theme="default", | |
live=False | |
) | |
from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq, AutoTokenizer, AutoModelForSeq2SeqLM | |
from pydub import AudioSegment | |
import soundfile as sf | |
import numpy as np | |
import os | |
import nltk | |
from fpdf import FPDF | |
import time | |
nltk.download('punkt') | |
HF_AUTH_TOKEN = os.getenv('HF_AUTH_TOKEN') | |
# transcription | |
processor = AutoProcessor.from_pretrained("NbAiLabBeta/nb-whisper-large-semantic") | |
transcription_model = AutoModelForSpeechSeq2Seq.from_pretrained("NbAiLabBeta/nb-whisper-large-semantic") | |
# summarization | |
summarization_tokenizer = AutoTokenizer.from_pretrained("NbAiLab/norbert-summarization") | |
summarization_model = AutoModelForSeq2SeqLM.from_pretrained("NbAiLab/norbert-summarization") | |
# setup | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
torch_dtype = torch.float32 | |
# move 'em | |
transcription_model.to(device) | |
summarization_model.to(device) # PS. model needs to be told to use graph-based summary method (Lexname?) | |
def convert_to_wav(audio_file): | |
audio = AudioSegment.from_file(audio_file, format="m4a") | |
wav_file = "temp.wav" | |
audio.export(wav_file, format="wav") | |
return wav_file | |
def transcribe_audio(audio_file, batch_size=4): | |
start_time = time.time() | |
# Convert .m4a to .wav | |
if audio_file.endswith(".m4a"): | |
audio_file = convert_to_wav(audio_file) | |
audio_input, sample_rate = sf.read(audio_file) | |
chunk_size = 16000 * 30 | |
chunks = [audio_input[i:i + chunk_size] for i in range(0, len(audio_input), chunk_size)] | |
transcription = "" | |
for i in range(0, len(chunks), batch_size): | |
batch_chunks = chunks[i:i + batch_size] | |
inputs = processor(batch_chunks, sampling_rate=16000, return_tensors="pt", padding=True) | |
inputs = inputs.to(device) | |
attention_mask = inputs.attention_mask.to(device) if 'attention_mask' in inputs else None | |
with torch.no_grad(): | |
output = transcription_model.generate( | |
inputs.input_features, | |
max_length=2048, # Increase max_length for longer outputs | |
num_beams=7, | |
task="transcribe", | |
attention_mask=attention_mask, | |
# forced_decoder_ids=None, # OBS! forced_decoder_ids must not be set. Just marked it out for, just in case.. | |
language="no" | |
) | |
transcription += " ".join(processor.batch_decode(output, skip_special_tokens=True)) + " " | |
end_time = time.time() | |
transcription_time = end_time - start_time | |
word_count = len(transcription.split()) | |
result = f"Transcription: {transcription.strip()}\n\nTime taken: {transcription_time:.2f} seconds\nNumber of words: {word_count}" | |
return transcription.strip(), result | |
def summarize_text(text): | |
inputs = summarization_tokenizer([text], max_length=1024, return_tensors="pt", truncation=True) | |
inputs = inputs.to(device) | |
summary_ids = summarization_model.generate(inputs.input_ids, num_beams=4, max_length=150, early_stopping=True) | |
summary = summarization_tokenizer.decode(summary_ids[0], skip_special_tokens=True) | |
return summary | |
# HTML syntax for imagery | |
image_html = """ | |
<div style="text-align: center;"> | |
<img src="https://huggingface.co/spaces/camparchimedes/ola_s-audioshop/raw/main/Olas%20AudioSwitch%20Shop.png" alt="Banner" width="87%" height="auto"> | |
</div> | |
<div style="text-align: center; margin-top: 20px;"> | |
<img src="https://huggingface.co/spaces/camparchimedes/ola_s-audioshop/raw/main/picture.jpg" alt="Additional Image" width="50%" height="auto"> | |
</div> | |
""" | |
# Gradio UI | |
iface = gr.Blocks() | |
with iface: | |
gr.HTML(image_html) | |
gr.Markdown("# Switch Work Audio Transcription App\nUpload an audio file to get the transcription") | |
audio_input = gr.Audio(type="filepath") | |
batch_size_input = gr.Slider(minimum=1, maximum=16, step=1, default=4, label="Batch Size") | |
transcription_output = gr.Textbox() | |
summary_output = gr.Textbox() | |
transcribe_button = gr.Button("Transcribe and Summarize") | |
def transcribe_and_summarize(audio_file, batch_size): | |
transcription, result = transcribe_audio(audio_file, batch_size) | |
summary = summarize_text(transcription) | |
return result, summary | |
transcribe_button.click(fn=transcribe_and_summarize, inputs=[audio_input, batch_size_input], outputs=[transcription_output, summary_output]) | |
def save_to_pdf(transcription, summary): | |
pdf = FPDF() | |
pdf.add_page() | |
pdf.set_font("Arial", size=12) | |
# include transcription | |
pdf.multi_cell(0, 10, "Transcription:\n" + transcription) | |
# paragraph space | |
pdf.ln(10) | |
# include summary | |
pdf.multi_cell(0, 10, "Summary:\n" + summary) | |
pdf_output_path = "transcription_summary.pdf" | |
pdf.output(pdf_output_path) | |
return pdf_output_path | |
# run | |
iface.launch(share=True, debug=True) | |