Spaces:
Sleeping
Sleeping
# app.py | |
# Version: 1.07 (08.24.24), ALPHA | |
#--------------------------------------------------------------------------------------------------------------------------------------------- | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
#--------------------------------------------------------------------------------------------------------------------------------------------- | |
import gradio as gr | |
from PIL import Image | |
from pydub import AudioSegment | |
import os | |
import re | |
import time | |
import warnings | |
#import datetime | |
import subprocess | |
from pathlib import Path | |
from fpdf import FPDF | |
import psutil | |
from gpuinfo import GPUInfo | |
#import pandas as pd | |
#import csv | |
import numpy as np | |
import torch | |
#import torchaudio | |
#import torchaudio.transforms as transforms | |
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM | |
import spacy | |
import networkx as nx | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
from sklearn.metrics.pairwise import cosine_similarity | |
#--------------------------------------------------------------------------------------------------------------------------------------------- | |
warnings.filterwarnings("ignore") | |
HEADER_INFO = """ | |
# WEB APP ✨| Norwegian WHISPER Model | |
Switch Work [Transkribering av lydfiler til norsk skrift] | |
""".strip() | |
LOGO = "https://huggingface.co/spaces/camparchimedes/transcription_app/resolve/main/pic09w9678yhit.png" | |
SIDEBAR_INFO = f""" | |
<div align="center"> | |
<img src="{LOGO}" style="width: 100%; height: auto;"/> | |
</div> | |
""" | |
def convert_to_wav(filepath): | |
_,file_ending = os.path.splitext(f'{filepath}') | |
audio_file = filepath.replace(file_ending, ".wav") | |
os.system(f'ffmpeg -i "{filepath}" -ar 16000 -ac 1 -c:a pcm_s16le "{audio_file}"') | |
return audio_file | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
pipe = pipeline( | |
task="automatic-speech-recognition", | |
model="NbAiLab/nb-whisper-large", | |
chunk_length_s=30, | |
device=device, | |
) | |
def transcribe_audio(audio_file, batch_size=10): | |
#if audio_file.endswith(".m4a"): | |
#audio_file = convert_to_wav(audio_file) | |
start_time = time.time() | |
outputs = pipe(audio_file, batch_size=batch_size, return_timestamps=False, generate_kwargs={'task': 'transcribe', 'language': 'no'}) # skip_special_tokens=True | |
text = outputs["text"] | |
end_time = time.time() | |
output_time = end_time - start_time | |
word_count = len(text.split()) | |
memory = psutil.virtual_memory() | |
gpu_utilization, gpu_memory = GPUInfo.gpu_usage() | |
gpu_utilization = gpu_utilization[0] if len(gpu_utilization) > 0 else 0 | |
gpu_memory = gpu_memory[0] if len(gpu_memory) > 0 else 0 | |
system_info = f""" | |
*Memory: {memory.total / (1024 * 1024 * 1024):.2f}GB, used: {memory.percent}%, available: {memory.available / (1024 * 1024 * 1024):.2f}GB.* | |
*Processing time: {output_time:.2f} seconds.* | |
*Number of words: {word_count}* | |
*GPU Utilization: {gpu_utilization}%, GPU Memory: {gpu_memory}*""" | |
return text.strip(), system_info | |
#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: | |
# Clean/preprocess text | |
def clean_text(text): | |
text = re.sub(r'https?:\/\/.*[\r\n]*', '', text) | |
text = re.sub(r'[^\w\s]', '', text) | |
text = re.sub(r'\s+', ' ', text).strip() | |
return text | |
nlp = spacy.blank("nb") # 'nb' ==> codename = Norwegian Bokmål | |
nlp.add_pipe('sentencizer') | |
spacy_stop_words = spacy.lang.nb.stop_words.STOP_WORDS | |
def preprocess_text(text): | |
# Process the text with SpaCy | |
doc = nlp(text) | |
# SpaCy's stop top wrds direct | |
stop_words = spacy_stop_words | |
# Filter out stop words | |
words = [token.text for token in doc if token.text.lower() not in stop_words] | |
return ' '.join(words) | |
# Summarize w/T5 model | |
def summarize_text(text): | |
preprocessed_text = preprocess_text(text) | |
inputs = summarization_tokenizer(preprocessed_text, max_length=1024, return_tensors="pt", truncation=True) | |
inputs = inputs.to(device) | |
summary_ids = summarization_model.generate(inputs.input_ids, num_beams=5, max_length=150, early_stopping=True) | |
return summarization_tokenizer.decode(summary_ids[0], skip_special_tokens=True) | |
# Builds similarity matrix | |
def build_similarity_matrix(sentences, stop_words): | |
similarity_matrix = nx.Graph() | |
for i, tokens_a in enumerate(sentences): | |
for j, tokens_b in enumerate(sentences): | |
if i != j: | |
common_words = set(tokens_a) & set(tokens_b) | |
similarity_matrix.add_edge(i, j, weight=len(common_words)) | |
return similarity_matrix | |
# "Graph-based summarization" =====> | |
def graph_based_summary(text, num_paragraphs=3): | |
doc = nlp(text) | |
sentences = [sent.text for sent in doc.sents] | |
if len(sentences) < num_paragraphs: | |
return sentences | |
sentence_tokens = [nlp(sent) for sent in sentences] | |
stop_words = spacy_stop_words | |
filtered_tokens = [[token.text for token in tokens if token.text.lower() not in stop_words] for tokens in sentence_tokens] | |
similarity_matrix = build_similarity_matrix(filtered_tokens, stop_words) | |
scores = nx.pagerank(similarity_matrix) | |
ranked_sentences = sorted(((scores[i], sent) for i, sent in enumerate(sentences)), reverse=True) | |
return ' '.join([sent for _, sent in ranked_sentences[:num_paragraphs]]) | |
# LexRank | |
def lex_rank_summary(text, num_paragraphs=3, threshold=0.1): | |
doc = nlp(text) | |
sentences = [sent.text for sent in doc.sents] | |
if len(sentences) < num_paragraphs: | |
return sentences | |
stop_words = spacy_stop_words | |
vectorizer = TfidfVectorizer(stop_words=list(stop_words)) | |
X = vectorizer.fit_transform(sentences) | |
similarity_matrix = cosine_similarity(X, X) | |
# Apply threshold@similarity matrix | |
similarity_matrix[similarity_matrix < threshold] = 0 | |
nx_graph = nx.from_numpy_array(similarity_matrix) | |
scores = nx.pagerank(nx_graph) | |
ranked_sentences = sorted(((scores[i], s) for i, s in enumerate(sentences)), reverse=True) | |
return ' '.join([ranked_sentences[i][1] for i in range(num_paragraphs)]) | |
# TextRank | |
def text_rank_summary(text, num_paragraphs=3): | |
doc = nlp(text) | |
sentences = [sent.text for sent in doc.sents] | |
if len(sentences) < num_paragraphs: | |
return sentences | |
stop_words = spacy_stop_words | |
vectorizer = TfidfVectorizer(stop_words=list(stop_words)) | |
X = vectorizer.fit_transform(sentences) | |
similarity_matrix = cosine_similarity(X, X) | |
nx_graph = nx.from_numpy_array(similarity_matrix) | |
scores = nx.pagerank(nx_graph) | |
ranked_sentences = sorted(((scores[i], s) for i, s in enumerate(sentences)), reverse=True) | |
return ' '.join([ranked_sentences[i][1] for i in range(num_paragraphs)]) | |
# Save text+summary/PDF | |
def save_to_pdf(text, summary): | |
pdf = FPDF() | |
pdf.add_page() | |
pdf.set_font("Arial", size=12) | |
if text: | |
pdf.multi_cell(0, 10, "Text:\n" + text) | |
pdf.ln(10) # Paragraph space | |
if summary: | |
pdf.multi_cell(0, 10, "Summary:\n" + summary) | |
pdf_output_path = "transcription.pdf" | |
pdf.output(pdf_output_path) | |
return pdf_output_path | |
iface = gr.Blocks() | |
with iface: | |
gr.HTML(SIDEBAR_INFO) | |
gr.Markdown(HEADER_INFO) | |
with gr.Tabs(): | |
with gr.TabItem("Transcription"): | |
audio_input = gr.Audio(type="filepath") | |
text_output = gr.Textbox(label="Text") | |
result_output = gr.Textbox(label="Transcription Details") | |
transcribe_button = gr.Button("Transcribe") | |
transcribe_button.click(fn=transcribe_audio, inputs=[audio_input], outputs=[text_output, result_output]) | |
with gr.TabItem("Summary | Graph-based"): | |
summary_output = gr.Textbox(label="Summary | Graph-based") | |
summarize_button = gr.Button("Summarize") | |
summarize_button.click(fn=lambda text: graph_based_summary(text), inputs=[text_output], outputs=[summary_output]) | |
with gr.TabItem("Summary | LexRank"): | |
summary_output = gr.Textbox(label="Summary | LexRank") | |
summarize_button = gr.Button("Summarize") | |
summarize_button.click(fn=lambda text: lex_rank_summary(text), inputs=[text_output], outputs=[summary_output]) | |
with gr.TabItem("Summary | TextRank"): | |
summary_output = gr.Textbox(label="Summary | TextRank") | |
summarize_button = gr.Button("Summarize") | |
summarize_button.click(fn=lambda text: text_rank_summary(text), inputs=[text_output], outputs=[summary_output]) | |
with gr.TabItem("Download PDF"): | |
pdf_text_only = gr.Button("Download PDF with Text Only") | |
pdf_summary_only = gr.Button("Download PDF with Summary Only") | |
pdf_both = gr.Button("Download PDF with Both") | |
pdf_output = gr.File(label="Download PDF") | |
pdf_text_only.click(fn=lambda text: save_to_pdf(text, ""), inputs=[text_output], outputs=[pdf_output]) | |
pdf_summary_only.click(fn=lambda summary: save_to_pdf("", summary), inputs=[summary_output], outputs=[pdf_output]) | |
pdf_both.click(fn=lambda text, summary: save_to_pdf(text, summary), inputs=[text_output, summary_output], outputs=[pdf_output]) | |
iface.launch(share=True, debug=True) | |