Spaces:
Build error
Build error
camparchimedes
commited on
Commit
•
3d3ff49
1
Parent(s):
d18b751
Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,20 @@
|
|
1 |
-
|
2 |
-
|
3 |
import gradio as gr
|
4 |
import warnings
|
5 |
import torch
|
6 |
-
from transformers import
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
warnings.filterwarnings("ignore")
|
|
|
|
|
|
|
|
|
9 |
|
10 |
# Load tokenizer and model
|
11 |
tokenizer = WhisperTokenizer.from_pretrained("NbAiLabBeta/nb-whisper-medium")
|
@@ -15,9 +24,10 @@ processor = WhisperProcessor.from_pretrained("NbAiLabBeta/nb-whisper-medium")
|
|
15 |
# Set up the device
|
16 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
17 |
torch_dtype = torch.float32
|
|
|
18 |
|
19 |
# Initialize pipeline
|
20 |
-
asr = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, device=device, torch_dtype=
|
21 |
|
22 |
def transcribe_audio(audio_file):
|
23 |
# Perform transcription
|
@@ -33,38 +43,16 @@ iface = gr.Interface(
|
|
33 |
title="Audio Transcription App",
|
34 |
description="Upload an audio file to get the transcription",
|
35 |
theme="default",
|
|
|
36 |
live=False
|
37 |
)
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
import soundfile as sf
|
43 |
-
import numpy as np
|
44 |
-
import os
|
45 |
-
import nltk
|
46 |
-
from fpdf import FPDF
|
47 |
-
import time
|
48 |
-
|
49 |
-
nltk.download('punkt')
|
50 |
-
|
51 |
-
HF_AUTH_TOKEN = os.getenv('HF_AUTH_TOKEN')
|
52 |
-
|
53 |
-
# transcription
|
54 |
-
processor = AutoProcessor.from_pretrained("NbAiLabBeta/nb-whisper-large-semantic")
|
55 |
-
transcription_model = AutoModelForSpeechSeq2Seq.from_pretrained("NbAiLabBeta/nb-whisper-large-semantic")
|
56 |
|
57 |
-
# summarization
|
58 |
-
|
59 |
-
summarization_model = AutoModelForSeq2SeqLM.from_pretrained("NbAiLab/norbert-summarization")
|
60 |
-
|
61 |
-
# setup
|
62 |
-
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
63 |
-
torch_dtype = torch.float32
|
64 |
-
|
65 |
-
# move 'em
|
66 |
-
transcription_model.to(device)
|
67 |
-
summarization_model.to(device) # PS. model needs to be told to use graph-based summary method (Lexname?)
|
68 |
|
69 |
def convert_to_wav(audio_file):
|
70 |
audio = AudioSegment.from_file(audio_file, format="m4a")
|
@@ -95,7 +83,6 @@ def transcribe_audio(audio_file, batch_size=4):
|
|
95 |
num_beams=7,
|
96 |
task="transcribe",
|
97 |
attention_mask=attention_mask,
|
98 |
-
# forced_decoder_ids=None, # OBS! forced_decoder_ids must not be set. Just marked it out for, just in case..
|
99 |
language="no"
|
100 |
)
|
101 |
transcription += " ".join(processor.batch_decode(output, skip_special_tokens=True)) + " "
|
@@ -109,7 +96,7 @@ def transcribe_audio(audio_file, batch_size=4):
|
|
109 |
return transcription.strip(), result
|
110 |
|
111 |
def summarize_text(text):
|
112 |
-
inputs = summarization_tokenizer(
|
113 |
inputs = inputs.to(device)
|
114 |
summary_ids = summarization_model.generate(inputs.input_ids, num_beams=4, max_length=150, early_stopping=True)
|
115 |
summary = summarization_tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
@@ -144,7 +131,6 @@ with iface:
|
|
144 |
|
145 |
transcribe_button.click(fn=transcribe_and_summarize, inputs=[audio_input, batch_size_input], outputs=[transcription_output, summary_output])
|
146 |
|
147 |
-
|
148 |
def save_to_pdf(transcription, summary):
|
149 |
pdf = FPDF()
|
150 |
pdf.add_page()
|
@@ -163,7 +149,5 @@ def save_to_pdf(transcription, summary):
|
|
163 |
pdf.output(pdf_output_path)
|
164 |
return pdf_output_path
|
165 |
|
166 |
-
|
167 |
-
|
168 |
# run
|
169 |
iface.launch(share=True, debug=True)
|
|
|
1 |
+
import os
|
|
|
2 |
import gradio as gr
|
3 |
import warnings
|
4 |
import torch
|
5 |
+
from transformers import WhisperTokenizer, WhisperForConditionalGeneration, WhisperProcessor, AutoTokenizer, AutoModelForSeq2SeqLM
|
6 |
+
from pydub import AudioSegment
|
7 |
+
import soundfile as sf
|
8 |
+
import numpy as np
|
9 |
+
import nltk
|
10 |
+
from fpdf import FPDF
|
11 |
+
import time
|
12 |
|
13 |
warnings.filterwarnings("ignore")
|
14 |
+
nltk.download('punkt')
|
15 |
+
|
16 |
+
# Load environment variable
|
17 |
+
HF_AUTH_TOKEN = os.getenv('HF_AUTH_TOKEN')
|
18 |
|
19 |
# Load tokenizer and model
|
20 |
tokenizer = WhisperTokenizer.from_pretrained("NbAiLabBeta/nb-whisper-medium")
|
|
|
24 |
# Set up the device
|
25 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
26 |
torch_dtype = torch.float32
|
27 |
+
model.to(device)
|
28 |
|
29 |
# Initialize pipeline
|
30 |
+
asr = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, device=device, torch_dtype=torch.float32)
|
31 |
|
32 |
def transcribe_audio(audio_file):
|
33 |
# Perform transcription
|
|
|
43 |
title="Audio Transcription App",
|
44 |
description="Upload an audio file to get the transcription",
|
45 |
theme="default",
|
46 |
+
layout="vertical",
|
47 |
live=False
|
48 |
)
|
49 |
|
50 |
+
# Load summarization models with authentication token
|
51 |
+
summarization_tokenizer = AutoTokenizer.from_pretrained("t5-base")
|
52 |
+
summarization_model = AutoModelForSeq2SeqLM.from_pretrained("t5-base")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
+
# Move summarization model to device
|
55 |
+
summarization_model.to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
def convert_to_wav(audio_file):
|
58 |
audio = AudioSegment.from_file(audio_file, format="m4a")
|
|
|
83 |
num_beams=7,
|
84 |
task="transcribe",
|
85 |
attention_mask=attention_mask,
|
|
|
86 |
language="no"
|
87 |
)
|
88 |
transcription += " ".join(processor.batch_decode(output, skip_special_tokens=True)) + " "
|
|
|
96 |
return transcription.strip(), result
|
97 |
|
98 |
def summarize_text(text):
|
99 |
+
inputs = summarization_tokenizer("summarize: " + text, return_tensors="pt", max_length=1024, truncation=True)
|
100 |
inputs = inputs.to(device)
|
101 |
summary_ids = summarization_model.generate(inputs.input_ids, num_beams=4, max_length=150, early_stopping=True)
|
102 |
summary = summarization_tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
|
|
131 |
|
132 |
transcribe_button.click(fn=transcribe_and_summarize, inputs=[audio_input, batch_size_input], outputs=[transcription_output, summary_output])
|
133 |
|
|
|
134 |
def save_to_pdf(transcription, summary):
|
135 |
pdf = FPDF()
|
136 |
pdf.add_page()
|
|
|
149 |
pdf.output(pdf_output_path)
|
150 |
return pdf_output_path
|
151 |
|
|
|
|
|
152 |
# run
|
153 |
iface.launch(share=True, debug=True)
|