# app.py # Version: 1.07 (08.24.24), ALPHA #--------------------------------------------------------------------------------------------------------------------------------------------- # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #--------------------------------------------------------------------------------------------------------------------------------------------- import gradio as gr from PIL import Image from pydub import AudioSegment import os import re import time import warnings #import datetime import subprocess from pathlib import Path from fpdf import FPDF import psutil from gpuinfo import GPUInfo #import pandas as pd #import csv import numpy as np import torch #import torchaudio #import torchaudio.transforms as transforms from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM import spacy import networkx as nx from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity #--------------------------------------------------------------------------------------------------------------------------------------------- warnings.filterwarnings("ignore") HEADER_INFO = """ # WEB APP ✨| Norwegian WHISPER Model Switch Work [Transkribering av lydfiler til norsk skrift] """.strip() LOGO = "https://huggingface.co/spaces/camparchimedes/transcription_app/resolve/main/pic09w9678yhit.png" SIDEBAR_INFO = f"""
""" def convert_to_wav(filepath): _,file_ending = os.path.splitext(f'{filepath}') audio_file = filepath.replace(file_ending, ".wav") os.system(f'ffmpeg -i "{filepath}" -ar 16000 -ac 1 -c:a pcm_s16le "{audio_file}"') return audio_file device = "cuda" if torch.cuda.is_available() else "cpu" pipe = pipeline( task="automatic-speech-recognition", model="NbAiLab/nb-whisper-large", chunk_length_s=30, device=device, ) def transcribe_audio(audio_file, batch_size=10): #if audio_file.endswith(".m4a"): #audio_file = convert_to_wav(audio_file) start_time = time.time() outputs = pipe(audio_file, batch_size=batch_size, return_timestamps=False, generate_kwargs={'task': 'transcribe', 'language': 'no'}) # skip_special_tokens=True text = outputs["text"] end_time = time.time() output_time = end_time - start_time word_count = len(text.split()) memory = psutil.virtual_memory() gpu_utilization, gpu_memory = GPUInfo.gpu_usage() gpu_utilization = gpu_utilization[0] if len(gpu_utilization) > 0 else 0 gpu_memory = gpu_memory[0] if len(gpu_memory) > 0 else 0 system_info = f""" *Memory: {memory.total / (1024 * 1024 * 1024):.2f}GB, used: {memory.percent}%, available: {memory.available / (1024 * 1024 * 1024):.2f}GB.* *Processing time: {output_time:.2f} seconds.* *Number of words: {word_count}* *GPU Utilization: {gpu_utilization}%, GPU Memory: {gpu_memory}*""" return text.strip(), system_info #::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: # Clean/preprocess text def clean_text(text): text = re.sub(r'https?:\/\/.*[\r\n]*', '', text) text = re.sub(r'[^\w\s]', '', text) text = re.sub(r'\s+', ' ', text).strip() return text nlp = spacy.blank("nb") # 'nb' ==> codename = Norwegian Bokmål nlp.add_pipe('sentencizer') spacy_stop_words = spacy.lang.nb.stop_words.STOP_WORDS def preprocess_text(text): # Process the text with SpaCy doc = nlp(text) # SpaCy's stop top wrds direct stop_words = spacy_stop_words # Filter out stop words words = [token.text for token in doc if token.text.lower() not in stop_words] return ' '.join(words) # Summarize w/T5 model def summarize_text(text): preprocessed_text = preprocess_text(text) inputs = summarization_tokenizer(preprocessed_text, max_length=1024, return_tensors="pt", truncation=True) inputs = inputs.to(device) summary_ids = summarization_model.generate(inputs.input_ids, num_beams=5, max_length=150, early_stopping=True) return summarization_tokenizer.decode(summary_ids[0], skip_special_tokens=True) # Builds similarity matrix def build_similarity_matrix(sentences, stop_words): similarity_matrix = nx.Graph() for i, tokens_a in enumerate(sentences): for j, tokens_b in enumerate(sentences): if i != j: common_words = set(tokens_a) & set(tokens_b) similarity_matrix.add_edge(i, j, weight=len(common_words)) return similarity_matrix # "Graph-based summarization" =====> def graph_based_summary(text, num_paragraphs=3): doc = nlp(text) sentences = [sent.text for sent in doc.sents] if len(sentences) < num_paragraphs: return sentences sentence_tokens = [nlp(sent) for sent in sentences] stop_words = spacy_stop_words filtered_tokens = [[token.text for token in tokens if token.text.lower() not in stop_words] for tokens in sentence_tokens] similarity_matrix = build_similarity_matrix(filtered_tokens, stop_words) scores = nx.pagerank(similarity_matrix) ranked_sentences = sorted(((scores[i], sent) for i, sent in enumerate(sentences)), reverse=True) return ' '.join([sent for _, sent in ranked_sentences[:num_paragraphs]]) # LexRank def lex_rank_summary(text, num_paragraphs=3, threshold=0.1): doc = nlp(text) sentences = [sent.text for sent in doc.sents] if len(sentences) < num_paragraphs: return sentences stop_words = spacy_stop_words vectorizer = TfidfVectorizer(stop_words=list(stop_words)) X = vectorizer.fit_transform(sentences) similarity_matrix = cosine_similarity(X, X) # Apply threshold@similarity matrix similarity_matrix[similarity_matrix < threshold] = 0 nx_graph = nx.from_numpy_array(similarity_matrix) scores = nx.pagerank(nx_graph) ranked_sentences = sorted(((scores[i], s) for i, s in enumerate(sentences)), reverse=True) return ' '.join([ranked_sentences[i][1] for i in range(num_paragraphs)]) # TextRank def text_rank_summary(text, num_paragraphs=3): doc = nlp(text) sentences = [sent.text for sent in doc.sents] if len(sentences) < num_paragraphs: return sentences stop_words = spacy_stop_words vectorizer = TfidfVectorizer(stop_words=list(stop_words)) X = vectorizer.fit_transform(sentences) similarity_matrix = cosine_similarity(X, X) nx_graph = nx.from_numpy_array(similarity_matrix) scores = nx.pagerank(nx_graph) ranked_sentences = sorted(((scores[i], s) for i, s in enumerate(sentences)), reverse=True) return ' '.join([ranked_sentences[i][1] for i in range(num_paragraphs)]) # Save text+summary/PDF def save_to_pdf(text, summary): pdf = FPDF() pdf.add_page() pdf.set_font("Arial", size=12) if text: pdf.multi_cell(0, 10, "Text:\n" + text) pdf.ln(10) # Paragraph space if summary: pdf.multi_cell(0, 10, "Summary:\n" + summary) pdf_output_path = "transcription.pdf" pdf.output(pdf_output_path) return pdf_output_path iface = gr.Blocks() with iface: gr.HTML(SIDEBAR_INFO) gr.Markdown(HEADER_INFO) with gr.Tabs(): with gr.TabItem("Transcription"): audio_input = gr.Audio(type="filepath") text_output = gr.Textbox(label="Text") result_output = gr.Textbox(label="Transcription Details") transcribe_button = gr.Button("Transcribe") transcribe_button.click(fn=transcribe_audio, inputs=[audio_input], outputs=[text_output, result_output]) with gr.TabItem("Summary | Graph-based"): summary_output = gr.Textbox(label="Summary | Graph-based") summarize_button = gr.Button("Summarize") summarize_button.click(fn=lambda text: graph_based_summary(text), inputs=[text_output], outputs=[summary_output]) with gr.TabItem("Summary | LexRank"): summary_output = gr.Textbox(label="Summary | LexRank") summarize_button = gr.Button("Summarize") summarize_button.click(fn=lambda text: lex_rank_summary(text), inputs=[text_output], outputs=[summary_output]) with gr.TabItem("Summary | TextRank"): summary_output = gr.Textbox(label="Summary | TextRank") summarize_button = gr.Button("Summarize") summarize_button.click(fn=lambda text: text_rank_summary(text), inputs=[text_output], outputs=[summary_output]) with gr.TabItem("Download PDF"): pdf_text_only = gr.Button("Download PDF with Text Only") pdf_summary_only = gr.Button("Download PDF with Summary Only") pdf_both = gr.Button("Download PDF with Both") pdf_output = gr.File(label="Download PDF") pdf_text_only.click(fn=lambda text: save_to_pdf(text, ""), inputs=[text_output], outputs=[pdf_output]) pdf_summary_only.click(fn=lambda summary: save_to_pdf("", summary), inputs=[summary_output], outputs=[pdf_output]) pdf_both.click(fn=lambda text, summary: save_to_pdf(text, summary), inputs=[text_output, summary_output], outputs=[pdf_output]) iface.launch(share=True, debug=True)