Spaces:
Build error
Build error
File size: 16,251 Bytes
56e867e 4ab7d39 56e867e 4ab7d39 56e867e 4ab7d39 fbc1bfd 46a9a03 56e867e 9e85dc1 56e867e 4ab7d39 56e867e 4ab7d39 56e867e 4ab7d39 56e867e 4ab7d39 56e867e 4ab7d39 56e867e 4ab7d39 56e867e 4ab7d39 56e867e 4ab7d39 56e867e 4ab7d39 56e867e 4ab7d39 56e867e 4ab7d39 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 |
import streamlit as st
import pandas as pd
import numpy as np
from math import ceil
from collections import Counter
from string import punctuation
import spacy
from negspacy.negation import Negex
from spacy import displacy
from spacy.lang.en import English
from spacy.matcher import PhraseMatcher
from spacy.tokens import Span
#import en_ner_bc5cdr_md
import re
from streamlit.components.v1 import html
if "load_state" not in st.session_state:
st.session_state.load_state = False
#if "button_clicked" not in st.session_state:
# st.session_state.button_clicked = True
#
#if "daily_button_clicked" not in st.session_state:
# st.session_state.daily_button_clicked = False
if "past_button_clicked" not in st.session_state:
st.session_state.past_button_clicked = False
#nlp = en_core_web_lg.load()
nlp = spacy.load("en_ner_bc5cdr_md")
st.set_page_config(page_title ='Patient Inpatient Progression Dashboard',
#page_icon= "Notes",
layout='wide')
st.title('Patient Inpatient Progression Dashboard')
st.markdown(
"""
<style>
[data-testid="stSidebar"][aria-expanded="true"] > div:first-child {
width: 400px;
}
[data-testid="stSidebar"][aria-expanded="false"] > div:first-child {
width: 400px;
margin-left: -230px;
}
</style>
""",
unsafe_allow_html=True,
)
st.sidebar.markdown('Using transformer model')
## ======== Loading dataset ========
## Loading in Admission Dataset
df = pd.read_csv('shpi25nov.csv')
df.sort_values(by='SUBJECT_ID',ascending = True, inplace=True)
# Loading in Admission chief Complaint and diagnosis
df2 = pd.read_csv('cohort_cc_adm_diag.csv')
# Loading in Dischare History
df3 = pd.read_csv('cohort_past_history_12072022.csv')
df3.sort_values(by='CHARTDATE',ascending = False, inplace=True)
# Loading in Daily Narrative
df4 = pd.read_csv('24houreventsFulltextwdifference.csv')
df4.sort_values(by=['SUBJECT_ID','HADM_ID','STORETIME'],ascending = True, inplace=True)
# combining both data into one
df = pd.merge(df, df2, on=['HADM_ID','SUBJECT_ID'])
# Deleting admission chief complaint and diagnosis after combining
del df2
# Remove decimal point from Admission ID
df['HADM_ID'] = df['HADM_ID'].astype(str).apply(lambda x: x.replace('.0',''))
df3['HADM_ID'] = df3['HADM_ID'].astype(str).apply(lambda x: x.replace('.0',''))
df4['HADM_ID'] = df4['HADM_ID'].astype(str).apply(lambda x: x.replace('.0',''))
df3['INDEX_HADM_ID'] = df3['INDEX_HADM_ID'].astype(str).apply(lambda x: x.replace('.0',''))
df3["CHARTDATE_HADM_ID"] = df3["CHARTDATE"].astype(str) +' ('+ df3["HADM_ID"] +')'
df3["DIAGNOSIS"] = df3["DIAGNOSIS"].str.capitalize()
df3["DISCHARGE_LOCATION"] = df3["DISCHARGE_LOCATION"].str.capitalize()
df3["TEXT"] =df3["TEXT"].replace(r'\n',' \n ', regex=True)
df3["TEXT"] =df3["TEXT"].replace(r'#',' ', regex=True)
df3["BertSummarizer"] =df3["BertSummarizer"].replace(r'#',' ', regex=True)
#Renaming column
df.rename(columns={'SUBJECT_ID':'Patient_ID',
'HADM_ID':'Admission_ID',
'hpi_input_text':'Original_Text',
'hpi_reference_summary':'Reference_text'}, inplace = True)
df3.rename(columns={'SUBJECT_ID':'Patient_ID',
'HADM_ID':'PAST_Admission_ID',
'INDEX_HADM_ID':'Admission_ID'}, inplace = True)
df4.rename(columns={'SUBJECT_ID':'Patient_ID',
'HADM_ID':'Admission_ID',
'Full_24_Hour_Events':'Full Text'}, inplace = True)
#Filter selection
st.sidebar.header("Search for Patient:")
# ===== Initial filter for patient and admission id =====
patientid = df['Patient_ID'].unique()
patient = st.sidebar.selectbox('Select Patient ID:', patientid) #Filter Patient
admissionid = df['Admission_ID'].loc[df['Patient_ID'] == patient] #Filter available Admission id for patient
HospitalAdmission = st.sidebar.selectbox(' ', admissionid)
pastHistoryEpDate = df3['CHARTDATE_HADM_ID'].loc[(df3['Patient_ID'] == patient) & (df3['Admission_ID']== HospitalAdmission)]
countOfAdmission = len(pastHistoryEpDate)
# List of Model available
#model = st.sidebar.selectbox('Select Model', ('BertSummarizer','BertGPT2','t5seq2eq','t5','gensim','pysummarizer'))
st.sidebar.markdown("Model: BertSummarizer")
model = 'BertSummarizer'
# ===== to display selected patient and admission id on main page
col3,col4 = st.columns(2)
patientid = col3.write(f"Patient ID: {patient} ")
admissionid =col4.write(f"Admission ID: {HospitalAdmission} ")
runtext = ''
inputNote ='Input note here:'
# Query out relevant Clinical notes
original_text = df.query(
"Patient_ID == @patient & Admission_ID == @HospitalAdmission"
)
original_text2 = original_text['adm_notes_text'].values
AdmissionChiefCom = original_text['Admission_Chief_Complaint'].values
diagnosis =original_text['DIAGNOSIS'].values
reference_text = original_text['Reference_text'].values
#dailyNoteChange = df4['_24_Hour_Events'].loc[(df4['Patient_ID'] == patient) & (df3['Admission_ID']== HospitalAdmission)]
dailyNoteChange =df4[['STORETIME','_24_Hour_Events']].loc[(df4['Patient_ID'] == patient) & (df4['Admission_ID']==HospitalAdmission) & df4['_24_Hour_Events'].notnull()]
dailyNoteChange.rename(columns={'STORETIME':'Time of Record',
'_24_Hour_Events':'Note Changes'}, inplace = True)
dailyNote = df4['Full Text'].loc[(df4['Patient_ID'] == patient) & (df4['Admission_ID']==HospitalAdmission)]
dailyNote = dailyNote.unique()
##========= Buttons to the 5 tabs ======== Temp disabled Discharge Plan and Social Notes
##col1, col2, col3, col4, col5 = st.columns([1,1,1,1,1]) -- to uncomment and comment below line to include discharge plan and social notes
col1, col2, col5 = st.columns([1,1,1])
col6, col7 =st.columns([2,2])
with st.container():
with col1:
btnAdmission = st.button("🏥 Admission")
inputNote = "Input Admission Note"
with col2:
btnDailyNarrative = st.button('📆Daily Narrative')
# with col3:what
# btnDischargePlan = st.button('🗒️Discharge Plan')
# if btnDischargePlan:
# inputNote = "Input Discharge Plan"
# with col4:
# btnSocialNotes = st.button('📝Social Notes')
# if btnSocialNotes:
# inputNote = "Input Social Note"
with col5:
btnPastHistory = st.button('📇Past History (6 Mths)')
##======================== Start of NER Tagging ========================
#lemmatizing the notes to capture all forms of negation(e.g., deny: denies, denying)
def lemmatize(note, nlp):
doc = nlp(note)
lemNote = [wd.lemma_ for wd in doc]
return " ".join(lemNote)
#function to modify options for displacy NER visualization
def get_entity_options():
entities = ["DISEASE", "CHEMICAL", "NEG_ENTITY"]
colors = {'DISEASE': 'pink', 'CHEMICAL': 'orange', "NEG_ENTITY":'white'}
options = {"ents": entities, "colors": colors}
return options
#adding a new pipeline component to identify negation
def neg_model():
nlp.add_pipe('sentencizer')
nlp.add_pipe(
"negex",
config={
"chunk_prefix": ["no"],
},
last=True)
return nlp
def negation_handling(note, neg_model):
results = []
nlp = neg_model()
note = note.split(".") #sentence tokenizing based on delimeter
note = [n.strip() for n in note] #removing extra spaces at the begining and end of sentence
for t in note:
doc = nlp(t)
for e in doc.ents:
rs = str(e._.negex)
if rs == "True":
results.append(e.text)
return results
#function to identify span objects of matched negative phrases from text
def match(nlp,terms,label):
patterns = [nlp.make_doc(text) for text in terms]
matcher = PhraseMatcher(nlp.vocab)
matcher.add(label, None, *patterns)
return matcher
#replacing the labels for identified negative entities
def overwrite_ent_lbl(matcher, doc):
matches = matcher(doc)
seen_tokens = set()
new_entities = []
entities = doc.ents
for match_id, start, end in matches:
if start not in seen_tokens and end - 1 not in seen_tokens:
new_entities.append(Span(doc, start, end, label=match_id))
entities = [e for e in entities if not (e.start < end and e.end > start)]
seen_tokens.update(range(start, end))
doc.ents = tuple(entities) + tuple(new_entities)
return doc
#deduplicate repeated entities
def dedupe(items):
seen = set()
for item in items:
item = str(item).strip()
if item not in seen:
yield item
seen.add(item)
##======================== End of NER Tagging ========================
def run_model(input_text):
if model == "BertSummarizer":
output = original_text['BertSummarizer2s'].values
st.write('Summary on History of Presenting illness')
st.success(output)
##========= on Past History Tab =========
if btnPastHistory or st.session_state["past_button_clicked"]:
#st.session_state["button_clicked"] = False
#st.session_state["daily_button_clicked"] = False
st.session_state["past_button_clicked"] = True
with st.container():
with col6:
st.markdown('**No. of admission past 6 months:**')
st.markdown(countOfAdmission)
with col7:
#st.date_input('Select Admission Date') # To replace with a dropdown filter instead
#st.selectbox('Past Episodes',pastHistoryEp)
pastHistory = st.selectbox('Select Past History Admission', pastHistoryEpDate, format_func=lambda x: 'Select an option' if x == '' else x)
historyAdmission = df3.query(
"Patient_ID == @patient & CHARTDATE_HADM_ID == @pastHistory"
)
if historyAdmission.shape[0] == 0:
runtext = "No past episodes"
else:
#runtext = historyAdmission['hospital_course_processed'].values[0]
runtext = historyAdmission['hospital_course_processed'].values[0]
if btnAdmission:
#st.session_state["daily_button_clicked"] = False
#st.session_state["past_button_clicked"] = False
#st.session_state["button_clicked"] = True
runtext =st.text_area(inputNote, str(original_text2)[1:-1], height=300)
#if btnDailyNarrative:
#st.session_state["button_clicked"] = False
#st.session_state["past_button_clicked"] = False
#st.session_state["daily_button_clicked"] = True
lem_clinical_note= lemmatize(runtext, nlp)
#creating a doc object using BC5CDR model
doc = nlp(lem_clinical_note)
options = get_entity_options()
#list of negative concepts from clinical note identified by negspacy
results0 = negation_handling(lem_clinical_note, neg_model)
matcher = match(nlp, results0,"NEG_ENTITY")
#doc0: new doc object with added "NEG_ENTITY label"
doc0 = overwrite_ent_lbl(matcher,doc)
#visualizing identified Named Entities in clinical input text
ent_html = displacy.render(doc0, style='ent', options=options)
col1, col2 = st.columns([1,1])
#to not show summary and references text for Past History and Daily Narrative
if btnAdmission :
#st.session_state["daily_button_clicked"] = False
st.session_state["past_button_clicked"] = False
#st.session_state["button_clicked"] = True
with st.container():
with col1:
st.button('Summarize')
run_model(runtext)
#sentences=runtext.split('.')
st.text_area('Reference text', str(reference_text), height=150)
with col2:
st.button('NER')
# ===== Adding the Disease/Chemical into a list =====
problem_entities = list(dedupe([t for t in doc0.ents if t.label_ == 'DISEASE']))
medication_entities = list(dedupe([t for t in doc0.ents if t.label_ == 'CHEMICAL']))
st.markdown('**CHIEF COMPLAINT:**')
st.write(str(AdmissionChiefCom)[1:-1])
st.markdown('**ADMISSION DIAGNOSIS:**')
st.markdown(str(diagnosis)[1:-1].capitalize())
st.markdown('**PROBLEM/ISSUE**')
#st.markdown(problem_entities)
st.markdown(f'<p style="background-color:PINK;color:#080808;font-size:16px;">{str(problem_entities)[1:-1]}</p>', unsafe_allow_html=True)
#genEntities(trans_df, 'DISEASE')
st.markdown('**MEDICATION**')
st.markdown(f'<p style="background-color:orange;color:#080808;font-size:16px;">{str(medication_entities)[1:-1]}</p>', unsafe_allow_html=True)
#genEntities(trans_df, 'CHEMICAL')
#st.table(trans_df)
st.markdown('**NER**')
with st.expander("See NER Details"):
st.markdown(ent_html, unsafe_allow_html=True)
elif btnDailyNarrative :
# st.session_state["daily_button_clicked"] = True
st.session_state["past_button_clicked"] = False
# st.session_state["button_clicked"] = False
with st.container():
st.markdown('Daily Progress Note (24 hour event only):')
st.markdown(str(dailyNote)[1:-1])
with st.container():
styler = dailyNoteChange.style.hide_index()
st.write(styler.to_html(), unsafe_allow_html=True)
st.markdown(f'<p style="color:#828080;font-size:12px;">*Current prototype displays only a single section within the daily progress note, could also potentially include all sections within each progress note and allow user to select the section changes the user wants to look at</p>', unsafe_allow_html=True)
#else:
elif btnPastHistory or st.session_state["past_button_clicked"]:
st.session_state["past_button_clicked"] = True
# st.session_state["button_clicked"] = False
# st.session_state["daily_button_clicked"] = False
# ===== Adding the Disease/Chemical into a list =====
problem_entities = list(dedupe([t for t in doc0.ents if t.label_ == 'DISEASE']))
medication_entities = list(dedupe([t for t in doc0.ents if t.label_ == 'CHEMICAL']))
if historyAdmission.shape[0] == 0:
st.markdown('Admission Date: NA')
st.markdown('Date of Discharge: NA')
st.markdown('Days from current admission: NA')
else:
st.markdown('Admission Date: ' + historyAdmission['ADMITTIME'].values[0])
st.markdown('Date of Discharge: ' + historyAdmission['DISCHTIME'].values[0])
st.markdown('Days from current admission: ' + str(historyAdmission['days_from_index'].values[0]) +' days')
#st.markdown('Summary: ')
st.markdown(f'<p style="color:#080808;font-size:16px;"><b>Summary: </b></p>', unsafe_allow_html=True)
if model == "BertSummarizer":
if historyAdmission.shape[0] == 0:
st.markdown('NA')
else:
st.markdown(str(historyAdmission['BertSummarizer'].values[0]))
elif model == "t5seq2eq":
if historyAdmission.shape[0] == 0:
st.markdown('NA')
else:
st.markdown(str(historyAdmission['t5seq2eq'].values[0]))
st.markdown(f'<p style="color:#080808;font-size:16px;"><b>Diagnosis: </b></p>', unsafe_allow_html=True)
if historyAdmission.shape[0] == 0:
st.markdown('NA')
else:
st.markdown(str(historyAdmission['Diagnosis_Description'].values[0]))
st.markdown('**PROBLEM/ISSUE**')
st.markdown(f'<p style="background-color:PINK;color:#080808;font-size:16px;">{str(problem_entities)[1:-1]}</p>', unsafe_allow_html=True)
st.markdown('**MEDICATION**')
st.markdown(f'<p style="background-color:orange;color:#080808;font-size:16px;">{str(medication_entities)[1:-1]}</p>', unsafe_allow_html=True)
st.markdown('Discharge Disposition: ' + str(historyAdmission['DISCHARGE_LOCATION'].values[0]))
with st.expander('Full Discharge Summary'):
#st.write("line 1 \n line 2 \n line 3")
fulldischargesummary = historyAdmission['TEXT'].values[0]
st.write(fulldischargesummary) |