import time import json import numpy as np import streamlit as st from pathlib import Path from collections import defaultdict import sys path_root = Path("./") sys.path.append(str(path_root)) st.set_page_config(page_title="PSC Runtime", page_icon='🌸', layout="centered") name = st.selectbox( "Choose a dataset", ["dl19", "dl20"], index=None, placeholder="Choose a dataset..." ) model_name = st.selectbox( "Choose a model", ["gpt-3.5", "gpt-4"], index=None, placeholder="Choose a model..." ) if name and model_name: import torch # fn = f"dl19-gpt-3.5.pt" fn = f"{name}-{model_name}.pt" object = torch.load(fn) outputs = object[2] query2outputs = {} for output in outputs: all_queries = {x['query'] for x in output} assert len(all_queries) == 1 query = list(all_queries)[0] query2outputs[query] = [x['hits'] for x in output] search_query = st.selectbox( "Choose a query from the list", sorted(query2outputs), # index=None, # placeholder="Choose a query from the list..." ) def preferences_from_hits(list_of_hits): docid2id = {} id2doc = {} preferences = [] for result in list_of_hits: for doc in result: if doc["docid"] not in docid2id: id = len(docid2id) docid2id[doc["docid"]] = id id2doc[id] = doc print([doc["docid"] for doc in result]) print([docid2id[doc["docid"]] for doc in result]) preferences.append([docid2id[doc["docid"]] for doc in result]) # = {v: k for k, v in docid2id.items()} return np.array(preferences), id2doc def load_qrels(name): import ir_datasets if name == "dl19": ds_name = "msmarco-passage/trec-dl-2019/judged" elif name == "dl20": ds_name = "msmarco-passage/trec-dl-2020/judged" else: raise ValueError(name) dataset = ir_datasets.load(ds_name) qrels = defaultdict(dict) for qrel in dataset.qrels_iter(): qrels[qrel.query_id][qrel.doc_id] = qrel.relevance return qrels def aggregate(list_of_hits): import numpy as np from permsc import KemenyOptimalAggregator, sum_kendall_tau, ranks_from_preferences from permsc import BordaRankAggregator preferences, id2doc = preferences_from_hits(list_of_hits) y_optimal = KemenyOptimalAggregator().aggregate(preferences) # y_optimal = BordaRankAggregator().aggregate(preferences) return [id2doc[id] for id in y_optimal] def write_ranking(search_results, text): st.write(f'
{text} ms
', unsafe_allow_html=True) qid = {result["qid"] for result in search_results} assert len(qid) == 1 qid = list(qid)[0] for i, result in enumerate(search_results): result_id = result["docid"] contents = result["content"] label = qrels[str(qid)].get(str(result_id), -1) label_text = "Unlabeled" if label == 3: style = "style=\"color:rgb(237, 125, 12);\"" label_text = "High" elif label == 2: style = "style=\"color:rgb(244, 185, 66);\"" label_text = "Medium" elif label == 1: style = "style=\"color:rgb(241, 177, 118);\"" label_text = "Low" elif label == 0: style = "style=\"color:black;\"" label_text = "Not Relevance" else: style = "style=\"color:grey;\"" print(qid, result_id, label, style) # output = f'