File size: 31,861 Bytes
c732904
 
 
 
 
 
e411cc4
c732904
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72651a9
c732904
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72651a9
c732904
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72651a9
c732904
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6824586
 
 
c732904
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cfe989a
 
c732904
 
 
 
 
 
 
 
 
 
 
 
9f5c61a
c732904
 
 
 
 
 
da269cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
import functools
import os
import shutil
import zipfile
from io import BytesIO

import spaces
import gradio as gr
import imageio as imageio
import numpy as np
import torch as torch
from PIL import Image
from diffusers import UNet2DConditionModel, LCMScheduler
from gradio_imageslider import ImageSlider
from huggingface_hub import login
from tqdm import tqdm

from extrude import extrude_depth_3d
from marigold_depth_estimation_lcm import MarigoldDepthConsistencyPipeline

default_seed = 2024

default_image_denoise_steps = 4
default_image_ensemble_size = 1
default_image_processing_res = 768
default_image_reproducuble = True

default_video_depth_latent_init_strength = 0.1
default_video_denoise_steps = 1
default_video_ensemble_size = 1
default_video_processing_res = 768
default_video_out_fps = 15
default_video_out_max_frames = 100

default_bas_plane_near = 0.0
default_bas_plane_far = 1.0
default_bas_embossing = 20
default_bas_denoise_steps = 4
default_bas_ensemble_size = 1
default_bas_processing_res = 768
default_bas_size_longest_px = 512
default_bas_size_longest_cm = 10
default_bas_filter_size = 3
default_bas_frame_thickness = 5
default_bas_frame_near = 1
default_bas_frame_far = 1


def process_image(
    pipe,
    path_input,
    denoise_steps=default_image_denoise_steps,
    ensemble_size=default_image_ensemble_size,
    processing_res=default_image_processing_res,
    reproducible=default_image_reproducuble,
):
    pipe._encode_empty_text()
    input_image = Image.open(path_input)

    pipe_out = pipe(
        input_image,
        denoising_steps=denoise_steps,
        ensemble_size=ensemble_size,
        processing_res=processing_res,
        batch_size=1 if processing_res == 0 else 0,
        seed=default_seed if reproducible else None,
        show_progress_bar=False,
    )

    depth_pred = pipe_out.depth_np
    depth_colored = pipe_out.depth_colored
    depth_16bit = (depth_pred * 65535.0).astype(np.uint16)

    path_output_dir = os.path.splitext(path_input)[0] + "_output"
    os.makedirs(path_output_dir, exist_ok=True)

    name_base = os.path.splitext(os.path.basename(path_input))[0]
    path_out_fp32 = os.path.join(path_output_dir, f"{name_base}_depth_fp32.npy")
    path_out_16bit = os.path.join(path_output_dir, f"{name_base}_depth_16bit.png")
    path_out_vis = os.path.join(path_output_dir, f"{name_base}_depth_colored.png")

    np.save(path_out_fp32, depth_pred)
    Image.fromarray(depth_16bit).save(path_out_16bit, mode="I;16")
    depth_colored.save(path_out_vis)

    return (
        [path_out_16bit, path_out_vis],
        [path_out_16bit, path_out_fp32, path_out_vis],
    )


def process_video(
    pipe,
    path_input,
    depth_latent_init_strength=default_video_depth_latent_init_strength,
    denoise_steps=default_video_denoise_steps,
    ensemble_size=default_video_ensemble_size,
    processing_res=default_video_processing_res,
    out_fps=default_video_out_fps,
    out_max_frames=default_video_out_max_frames,
    progress=gr.Progress(),
):
    pipe._encode_empty_text()
    path_output_dir = os.path.splitext(path_input)[0] + "_output"
    os.makedirs(path_output_dir, exist_ok=True)

    name_base = os.path.splitext(os.path.basename(path_input))[0]
    path_out_vis = os.path.join(path_output_dir, f"{name_base}_depth_colored.mp4")
    path_out_16bit = os.path.join(path_output_dir, f"{name_base}_depth_16bit.zip")

    reader = imageio.get_reader(path_input)

    meta_data = reader.get_meta_data()
    fps = meta_data["fps"]
    size = meta_data["size"]
    duration_sec = meta_data["duration"]

    if fps <= out_fps:
        frame_interval, out_fps = 1, fps
    else:
        frame_interval = round(fps / out_fps)
        out_fps = fps / frame_interval

    out_duration_sec = out_max_frames / out_fps
    if duration_sec > out_duration_sec:
        gr.Warning(
            f"Only the first ~{int(out_duration_sec)} seconds will be processed; "
            f"use alternative setups for full processing"
        )

    writer = imageio.get_writer(path_out_vis, fps=out_fps)
    zipf = zipfile.ZipFile(path_out_16bit, "w", zipfile.ZIP_DEFLATED)
    prev_depth_latent = None

    pbar = tqdm(desc="Processing Video", total=out_max_frames)

    out_frame_id = 0
    for frame_id, frame in enumerate(reader):
        if not (frame_id % frame_interval == 0):
            continue
        out_frame_id += 1
        pbar.update(1)
        if out_frame_id > out_max_frames:
            break

        frame_pil = Image.fromarray(frame)

        pipe_out = pipe(
            frame_pil,
            denoising_steps=denoise_steps,
            ensemble_size=ensemble_size,
            processing_res=processing_res,
            match_input_res=False,
            batch_size=0,
            depth_latent_init=prev_depth_latent,
            depth_latent_init_strength=depth_latent_init_strength,
            seed=default_seed,
            show_progress_bar=False,
        )

        prev_depth_latent = pipe_out.depth_latent

        processed_frame = pipe_out.depth_colored
        processed_frame = imageio.core.util.Array(np.array(processed_frame))
        writer.append_data(processed_frame)

        processed_frame = (65535 * np.clip(pipe_out.depth_np, 0.0, 1.0)).astype(
            np.uint16
        )
        processed_frame = Image.fromarray(processed_frame, mode="I;16")

        archive_path = os.path.join(
            f"{name_base}_depth_16bit", f"{out_frame_id:05d}.png"
        )
        img_byte_arr = BytesIO()
        processed_frame.save(img_byte_arr, format="png")
        img_byte_arr.seek(0)
        zipf.writestr(archive_path, img_byte_arr.read())

    reader.close()
    writer.close()
    zipf.close()

    return (
        path_out_vis,
        [path_out_vis, path_out_16bit],
    )


def process_bas(
    pipe,
    path_input,
    plane_near=default_bas_plane_near,
    plane_far=default_bas_plane_far,
    embossing=default_bas_embossing,
    denoise_steps=default_bas_denoise_steps,
    ensemble_size=default_bas_ensemble_size,
    processing_res=default_bas_processing_res,
    size_longest_px=default_bas_size_longest_px,
    size_longest_cm=default_bas_size_longest_cm,
    filter_size=default_bas_filter_size,
    frame_thickness=default_bas_frame_thickness,
    frame_near=default_bas_frame_near,
    frame_far=default_bas_frame_far,
):
    pipe._encode_empty_text()
    if plane_near >= plane_far:
        raise gr.Error("NEAR plane must have a value smaller than the FAR plane")

    path_output_dir = os.path.splitext(path_input)[0] + "_output"
    os.makedirs(path_output_dir, exist_ok=True)

    name_base, name_ext = os.path.splitext(os.path.basename(path_input))

    input_image = Image.open(path_input)

    pipe_out = pipe(
        input_image,
        denoising_steps=denoise_steps,
        ensemble_size=ensemble_size,
        processing_res=processing_res,
        seed=default_seed,
        show_progress_bar=False,
    )

    depth_pred = pipe_out.depth_np * 65535

    def _process_3d(
        size_longest_px,
        filter_size,
        vertex_colors,
        scene_lights,
        output_model_scale=None,
        prepare_for_3d_printing=False,
    ):
        image_rgb_w, image_rgb_h = input_image.width, input_image.height
        image_rgb_d = max(image_rgb_w, image_rgb_h)
        image_new_w = size_longest_px * image_rgb_w // image_rgb_d
        image_new_h = size_longest_px * image_rgb_h // image_rgb_d

        image_rgb_new = os.path.join(
            path_output_dir, f"{name_base}_rgb_{size_longest_px}{name_ext}"
        )
        image_depth_new = os.path.join(
            path_output_dir, f"{name_base}_depth_{size_longest_px}.png"
        )
        input_image.resize((image_new_w, image_new_h), Image.LANCZOS).save(
            image_rgb_new
        )
        Image.fromarray(depth_pred).convert(mode="F").resize(
            (image_new_w, image_new_h), Image.BILINEAR
        ).convert("I").save(image_depth_new)

        path_glb, path_stl = extrude_depth_3d(
            image_rgb_new,
            image_depth_new,
            output_model_scale=size_longest_cm * 10
            if output_model_scale is None
            else output_model_scale,
            filter_size=filter_size,
            coef_near=plane_near,
            coef_far=plane_far,
            emboss=embossing / 100,
            f_thic=frame_thickness / 100,
            f_near=frame_near / 100,
            f_back=frame_far / 100,
            vertex_colors=vertex_colors,
            scene_lights=scene_lights,
            prepare_for_3d_printing=prepare_for_3d_printing,
        )

        return path_glb, path_stl

    path_viewer_glb, _ = _process_3d(
        256, filter_size, vertex_colors=False, scene_lights=True, output_model_scale=1
    )
    path_files_glb, path_files_stl = _process_3d(
        size_longest_px, filter_size, vertex_colors=True, scene_lights=False, prepare_for_3d_printing=True
    )

    return path_viewer_glb, [path_files_glb, path_files_stl]


def run_demo_server(pipe):
    process_pipe_image = spaces.GPU(lambda *args, **kwargs: process_image(pipe, *args, **kwargs))
    process_pipe_video = spaces.GPU(lambda *args, **kwargs: process_video(pipe, *args, **kwargs))
    process_pipe_bas = spaces.GPU(lambda *args, **kwargs: process_bas(pipe, *args, **kwargs))
    os.environ["GRADIO_ALLOW_FLAGGING"] = "never"

    gradio_theme = gr.themes.Default()

    with gr.Blocks(
        theme=gradio_theme,
        title="Marigold-LCM Depth Estimation",
        css="""
            #download {
                height: 118px;
            }
            .slider .inner {
                width: 5px;
                background: #FFF;
            }
            .viewport {
                aspect-ratio: 4/3;
            }
            .tabs button.selected {
                font-size: 20px !important;
                color: crimson !important;
            }
        """,
        head="""
            <script async src="https://www.googletagmanager.com/gtag/js?id=G-1FWSVCGZTG"></script>
            <script>
                window.dataLayer = window.dataLayer || [];
                function gtag() {dataLayer.push(arguments);}
                gtag('js', new Date());
                gtag('config', 'G-1FWSVCGZTG');
            </script>
        """,
    ) as demo:
        gr.Markdown(
            """
            <h1 align="center">Marigold-LCM Depth Estimation</h1>
            <p align="center">
            <a title="Website" href="https://marigoldmonodepth.github.io/" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
                <img src="https://www.obukhov.ai/img/badges/badge-website.svg">
            </a>
            <a title="arXiv" href="https://arxiv.org/abs/2312.02145" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
                <img src="https://www.obukhov.ai/img/badges/badge-pdf.svg">
            </a>
            <a title="Github" href="https://github.com/prs-eth/marigold" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
                <img src="https://img.shields.io/github/stars/prs-eth/marigold?label=GitHub%20%E2%98%85&logo=github&color=C8C" alt="badge-github-stars">
            </a>
            <a title="Social" href="https://twitter.com/antonobukhov1" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
                <img src="https://www.obukhov.ai/img/badges/badge-social.svg" alt="social">
            </a>
            </p>
            <p align="justify">
                Marigold-LCM is the fast version of Marigold, the state-of-the-art depth estimator for images in the wild.
                It combines the power of the original Marigold 10-step estimator and the Latent Consistency Models, delivering high-quality results in as little as <b>one step</b>.
                We provide three functions in this demo: Image, Video, and Bas-relief 3D processing — <b>see the tabs below</b>. 
                Upload your content into the <b>left</b> side, or click any of the <b>examples</b> below.
                Wait a second (for images and 3D) or a minute (for videos), and interact with the result in the <b>right</b> side.
                To avoid queuing, fork the demo into your profile.
            </p>
        """
        )

        with gr.Tabs(elem_classes=["tabs"]):
            with gr.Tab("Image"):
                with gr.Row():
                    with gr.Column():
                        image_input = gr.Image(
                            label="Input Image",
                            type="filepath",
                        )
                        with gr.Row():
                            image_submit_btn = gr.Button(
                                value="Compute Depth", variant="primary"
                            )
                            image_reset_btn = gr.Button(value="Reset")
                        with gr.Accordion("Advanced options", open=False):
                            image_denoise_steps = gr.Slider(
                                label="Number of denoising steps",
                                minimum=1,
                                maximum=4,
                                step=1,
                                value=default_image_denoise_steps,
                            )
                            image_ensemble_size = gr.Slider(
                                label="Ensemble size",
                                minimum=1,
                                maximum=10,
                                step=1,
                                value=default_image_ensemble_size,
                            )
                            image_processing_res = gr.Radio(
                                [
                                    ("Native", 0),
                                    ("Recommended", 768),
                                ],
                                label="Processing resolution",
                                value=default_image_processing_res,
                            )
                    with gr.Column():
                        image_output_slider = ImageSlider(
                            label="Predicted depth (red-near, blue-far)",
                            type="filepath",
                            show_download_button=True,
                            show_share_button=True,
                            interactive=False,
                            elem_classes="slider",
                            position=0.25,
                        )
                        image_output_files = gr.Files(
                            label="Depth outputs",
                            elem_id="download",
                            interactive=False,
                        )
                gr.Examples(
                    fn=process_pipe_image,
                    examples=[
                        os.path.join("files", "image", name)
                        for name in [
                            "arc.jpeg",
                            "berries.jpeg",
                            "butterfly.jpeg",
                            "cat.jpg",
                            "concert.jpeg",
                            "dog.jpeg",
                            "doughnuts.jpeg",
                            "einstein.jpg",
                            "food.jpeg",
                            "glasses.jpeg",
                            "house.jpg",
                            "lake.jpeg",
                            "marigold.jpeg",
                            "portrait_1.jpeg",
                            "portrait_2.jpeg",
                            "pumpkins.jpg",
                            "puzzle.jpeg",
                            "road.jpg",
                            "scientists.jpg",
                            "surfboards.jpeg",
                            "surfer.jpeg",
                            "swings.jpg",
                            "switzerland.jpeg",
                            "teamwork.jpeg",
                            "wave.jpeg",
                        ]
                    ],
                    inputs=[image_input],
                    outputs=[image_output_slider, image_output_files],
                    cache_examples=True,
                )

            with gr.Tab("Video"):
                with gr.Row():
                    with gr.Column():
                        video_input = gr.Video(
                            label="Input Video",
                            sources=["upload"],
                        )
                        with gr.Row():
                            video_submit_btn = gr.Button(
                                value="Compute Depth", variant="primary"
                            )
                            video_reset_btn = gr.Button(value="Reset")
                    with gr.Column():
                        video_output_video = gr.Video(
                            label="Output video depth (red-near, blue-far)",
                            interactive=False,
                        )
                        video_output_files = gr.Files(
                            label="Depth outputs",
                            elem_id="download",
                            interactive=False,
                        )
                gr.Examples(
                    fn=process_pipe_video,
                    examples=[
                        os.path.join("files", "video", name)
                        for name in [
                            "cab.mp4",
                            "elephant.mp4",
                            "obama.mp4",
                        ]
                    ],
                    inputs=[video_input],
                    outputs=[video_output_video, video_output_files],
                    cache_examples=True,
                )

            with gr.Tab("Bas-relief (3D)"):
                gr.Markdown(
                    """
                    <p align="justify">
                        This part of the demo uses Marigold-LCM to create a bas-relief model. 
                        The models are watertight, with correct normals, and exported in the STL format, which makes them <b>3D-printable</b>.
                        Start by uploading the image and click "Create" with the default parameters. 
                        To improve the result, click "Clear", adjust the geometry sliders below, and click "Create" again.
                    </p>
                    """,
                )
                with gr.Row():
                    with gr.Column():
                        bas_input = gr.Image(
                            label="Input Image",
                            type="filepath",
                        )
                        with gr.Row():
                            bas_submit_btn = gr.Button(value="Create 3D", variant="primary")
                            bas_clear_btn = gr.Button(value="Clear")
                            bas_reset_btn = gr.Button(value="Reset")
                        with gr.Accordion("3D printing demo: Main options", open=True):
                            bas_plane_near = gr.Slider(
                                label="Relative position of the near plane (between 0 and 1)",
                                minimum=0.0,
                                maximum=1.0,
                                step=0.001,
                                value=default_bas_plane_near,
                            )
                            bas_plane_far = gr.Slider(
                                label="Relative position of the far plane (between near and 1)",
                                minimum=0.0,
                                maximum=1.0,
                                step=0.001,
                                value=default_bas_plane_far,
                            )
                            bas_embossing = gr.Slider(
                                label="Embossing level",
                                minimum=0,
                                maximum=100,
                                step=1,
                                value=default_bas_embossing,
                            )
                        with gr.Accordion("3D printing demo: Advanced options", open=False):
                            bas_denoise_steps = gr.Slider(
                                label="Number of denoising steps",
                                minimum=1,
                                maximum=4,
                                step=1,
                                value=default_bas_denoise_steps,
                            )
                            bas_ensemble_size = gr.Slider(
                                label="Ensemble size",
                                minimum=1,
                                maximum=10,
                                step=1,
                                value=default_bas_ensemble_size,
                            )
                            bas_processing_res = gr.Radio(
                                [
                                    ("Native", 0),
                                    ("Recommended", 768),
                                ],
                                label="Processing resolution",
                                value=default_bas_processing_res,
                            )
                            bas_size_longest_px = gr.Slider(
                                label="Size (px) of the longest side",
                                minimum=256,
                                maximum=1024,
                                step=256,
                                value=default_bas_size_longest_px,
                            )
                            bas_size_longest_cm = gr.Slider(
                                label="Size (cm) of the longest side",
                                minimum=1,
                                maximum=100,
                                step=1,
                                value=default_bas_size_longest_cm,
                            )
                            bas_filter_size = gr.Slider(
                                label="Size (px) of the smoothing filter",
                                minimum=1,
                                maximum=5,
                                step=2,
                                value=default_bas_filter_size,
                            )
                            bas_frame_thickness = gr.Slider(
                                label="Frame thickness",
                                minimum=0,
                                maximum=100,
                                step=1,
                                value=default_bas_frame_thickness,
                            )
                            bas_frame_near = gr.Slider(
                                label="Frame's near plane offset",
                                minimum=-100,
                                maximum=100,
                                step=1,
                                value=default_bas_frame_near,
                            )
                            bas_frame_far = gr.Slider(
                                label="Frame's far plane offset",
                                minimum=1,
                                maximum=10,
                                step=1,
                                value=default_bas_frame_far,
                            )
                    with gr.Column():
                        bas_output_viewer = gr.Model3D(
                            camera_position=(75.0, 90.0, 1.25),
                            elem_classes="viewport",
                            label="3D preview (low-res, relief highlight)",
                            interactive=False,
                        )
                        bas_output_files = gr.Files(
                            label="3D model outputs (high-res)",
                            elem_id="download",
                            interactive=False,
                        )
                gr.Examples(
                    fn=process_pipe_bas,
                    examples=[
                        [
                            "files/basrelief/coin.jpg",  # input
                            0.0,  # plane_near
                            0.66,  # plane_far
                            15,  # embossing
                            4,  # denoise_steps
                            4,  # ensemble_size
                            768,  # processing_res
                            512,  # size_longest_px
                            10,  # size_longest_cm
                            3,  # filter_size
                            5,  # frame_thickness
                            0,  # frame_near
                            1,  # frame_far
                        ],
                        [
                            "files/basrelief/einstein.jpg",  # input
                            0.0,  # plane_near
                            0.5,  # plane_far
                            50,  # embossing
                            2,  # denoise_steps
                            1,  # ensemble_size
                            768,  # processing_res
                            512,  # size_longest_px
                            10,  # size_longest_cm
                            3,  # filter_size
                            5,  # frame_thickness
                            -15,  # frame_near
                            1,  # frame_far
                        ],
                        [
                            "files/basrelief/food.jpeg",  # input
                            0.0,  # plane_near
                            1.0,  # plane_far
                            20,  # embossing
                            2,  # denoise_steps
                            4,  # ensemble_size
                            768,  # processing_res
                            512,  # size_longest_px
                            10,  # size_longest_cm
                            3,  # filter_size
                            5,  # frame_thickness
                            -5,  # frame_near
                            1,  # frame_far
                        ],
                    ],
                    inputs=[
                        bas_input,
                        bas_plane_near,
                        bas_plane_far,
                        bas_embossing,
                        bas_denoise_steps,
                        bas_ensemble_size,
                        bas_processing_res,
                        bas_size_longest_px,
                        bas_size_longest_cm,
                        bas_filter_size,
                        bas_frame_thickness,
                        bas_frame_near,
                        bas_frame_far,
                    ],
                    outputs=[bas_output_viewer, bas_output_files],
                    cache_examples=True,
                )

        image_submit_btn.click(
            fn=process_pipe_image,
            inputs=[
                image_input,
                image_denoise_steps,
                image_ensemble_size,
                image_processing_res,
            ],
            outputs=[image_output_slider, image_output_files],
            concurrency_limit=1,
        )

        image_reset_btn.click(
            fn=lambda: (
                None,
                None,
                None,
                default_image_ensemble_size,
                default_image_denoise_steps,
                default_image_processing_res,
            ),
            inputs=[],
            outputs=[
                image_input,
                image_output_slider,
                image_output_files,
                image_ensemble_size,
                image_denoise_steps,
                image_processing_res,
            ],
            concurrency_limit=1,
        )

        video_submit_btn.click(
            fn=process_pipe_video,
            inputs=[video_input],
            outputs=[video_output_video, video_output_files],
            concurrency_limit=1,
        )

        video_reset_btn.click(
            fn=lambda: (None, None, None),
            inputs=[],
            outputs=[video_input, video_output_video, video_output_files],
            concurrency_limit=1,
        )

        def wrapper_process_pipe_bas(*args, **kwargs):
            out = list(process_pipe_bas(*args, **kwargs))
            out = [gr.Button(interactive=False), gr.Image(interactive=False)] + out
            return out

        bas_submit_btn.click(
            fn=wrapper_process_pipe_bas,
            inputs=[
                bas_input,
                bas_plane_near,
                bas_plane_far,
                bas_embossing,
                bas_denoise_steps,
                bas_ensemble_size,
                bas_processing_res,
                bas_size_longest_px,
                bas_size_longest_cm,
                bas_filter_size,
                bas_frame_thickness,
                bas_frame_near,
                bas_frame_far,
            ],
            outputs=[bas_submit_btn, bas_input, bas_output_viewer, bas_output_files],
            concurrency_limit=1,
        )

        bas_clear_btn.click(
            fn=lambda: (gr.Button(interactive=True), None, None),
            inputs=[],
            outputs=[
                bas_submit_btn,
                bas_output_viewer,
                bas_output_files,
            ],
            concurrency_limit=1,
        )

        bas_reset_btn.click(
            fn=lambda: (
                gr.Button(interactive=True),
                None,
                None,
                None,
                default_bas_plane_near,
                default_bas_plane_far,
                default_bas_embossing,
                default_bas_denoise_steps,
                default_bas_ensemble_size,
                default_bas_processing_res,
                default_bas_size_longest_px,
                default_bas_size_longest_cm,
                default_bas_filter_size,
                default_bas_frame_thickness,
                default_bas_frame_near,
                default_bas_frame_far,
            ),
            inputs=[],
            outputs=[
                bas_submit_btn,
                bas_input,
                bas_output_viewer,
                bas_output_files,
                bas_plane_near,
                bas_plane_far,
                bas_embossing,
                bas_denoise_steps,
                bas_ensemble_size,
                bas_processing_res,
                bas_size_longest_px,
                bas_size_longest_cm,
                bas_filter_size,
                bas_frame_thickness,
                bas_frame_near,
                bas_frame_far,
            ],
            concurrency_limit=1,
        )

        demo.queue(
            api_open=False,
        ).launch(
            server_name="0.0.0.0",
            server_port=7860,
        )


def prefetch_hf_cache(pipe):
    process_image(pipe, "files/image/bee.jpg", 1, 1, 64)
    shutil.rmtree("files/image/bee_output")


def main():
    CHECKPOINT = "prs-eth/marigold-v1-0"
    CHECKPOINT_UNET_LCM = "prs-eth/marigold-lcm-v1-0"

    if "HF_TOKEN_LOGIN" in os.environ:
        login(token=os.environ["HF_TOKEN_LOGIN"])

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    pipe = MarigoldDepthConsistencyPipeline.from_pretrained(
        CHECKPOINT,
        unet=UNet2DConditionModel.from_pretrained(
            CHECKPOINT_UNET_LCM, subfolder="unet", use_auth_token=True
        ),
    )
    pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)

    pipe = pipe.to(device)
    pipe.unet = pipe.unet.cuda()
    prefetch_hf_cache(pipe)
    run_demo_server(pipe)


if __name__ == "__main__":
    main()