import gradio as gr import torch import librosa import json # Load model directly from transformers import pipeline, AutoProcessor, AutoModelForSpeechSeq2Seq pipe = pipeline("automatic-speech-recognition", model="dmatekenya/whisper-large-v3-chichewa") def transcribe(audio_file_mic=None, audio_file_upload=None, language="English (eng)"): if audio_file_mic: audio_file = audio_file_mic elif audio_file_upload: audio_file = audio_file_upload else: return "Please upload an audio file or record one" # Make sure audio is 16kHz # speech, sample_rate = librosa.load(audio_file) # if sample_rate != 16000: # speech = librosa.resample(speech, orig_sr=sample_rate, target_sr=16000) # Keep the same model in memory and simply switch out the language adapters by calling load_adapter() for the model and set_target_lang() for the tokenizer # language_code = iso_codes[language] # processor.tokenizer.set_target_lang(language_code) # model.load_adapter(language_code) result = pipe(audio_file) return result["text"] description = '''''' iface = gr.Interface(fn=transcribe, inputs=[ gr.Audio(source="microphone", type="filepath", label="Record Audio"), gr.Audio(source="upload", type="filepath", label="Upload Audio"), ], outputs=gr.Textbox(label="Transcription"), description=description ) iface.launch()