import torch import gradio as gr from transformers import pipeline from transformers.pipelines.audio_utils import ffmpeg_read import tempfile import os MODEL_NAME = "dmatekenya/whisper-large-v3-chichewa" BATCH_SIZE = 8 FILE_LIMIT_MB = 1000 YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("openai/whisper-large-v3") # assert tokenizer.is_fast # tokenizer.save_pretrained("...") device = 0 if torch.cuda.is_available() else "cpu" pipe = pipeline( task="automatic-speech-recognition", tokenizer=tokenizer, model=MODEL_NAME, chunk_length_s=30, device=device, ) def transcribe(inputs, task): if inputs is None: raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.") text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"] return text demo = gr.Blocks() file_transcribe = gr.Interface( fn=transcribe, inputs=[ gr.Audio(sources="upload", type="filepath", label="Audio file"), # gr.Radio(["transcribe", "translate"], label="Task", default="transcribe"), ], outputs="text", # layout="horizontal", # theme="huggingface", title="Whisper Large V3: Transcribe Audio", description=( "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the OpenAI Whisper" f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files" " of arbitrary length." ), allow_flagging="never", ) with demo: gr.TabbedInterface([file_transcribe], [ "Audio file"]) demo.launch(enable_queue=True)