Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
import torchvision.models as models | |
from modelscope.msdatasets import MsDataset | |
from utils import MODEL_DIR | |
class EvalNet: | |
model: nn.Module = None | |
m_type = "squeezenet" | |
input_size = 224 | |
output_size = 512 | |
def __init__(self, log_name: str, cls_num: int): | |
saved_model_path = f"{MODEL_DIR}/{log_name}/save.pt" | |
m_ver = "_".join(log_name.split("_")[:-3]) | |
self.m_type, self.input_size = self._model_info(m_ver) | |
if not hasattr(models, m_ver): | |
raise Exception("Unsupported model.") | |
self.model = eval("models.%s()" % m_ver) | |
linear_output = self._set_outsize() | |
self._set_classifier(cls_num, linear_output) | |
checkpoint = torch.load(saved_model_path, map_location="cpu") | |
if torch.cuda.is_available(): | |
checkpoint = torch.load(saved_model_path) | |
self.model.load_state_dict(checkpoint, False) | |
self.model.eval() | |
def _get_backbone(self, ver: str, backbone_list: list): | |
for bb in backbone_list: | |
if ver == bb["ver"]: | |
return bb | |
print("Backbone name not found, using default option - alexnet.") | |
return backbone_list[0] | |
def _model_info(self, m_ver: str): | |
backbone_list = MsDataset.load( | |
"monetjoe/cv_backbones", | |
split="v1", | |
trust_remote_code=True, | |
) | |
backbone = self._get_backbone(m_ver, backbone_list) | |
m_type = str(backbone["type"]) | |
input_size = int(backbone["input_size"]) | |
return m_type, input_size | |
def _classifier(self, cls_num: int, output_size: int, linear_output: bool): | |
q = (1.0 * output_size / cls_num) ** 0.25 | |
l1 = int(q * cls_num) | |
l2 = int(q * l1) | |
l3 = int(q * l2) | |
if linear_output: | |
return torch.nn.Sequential( | |
nn.Dropout(), | |
nn.Linear(output_size, l3), | |
nn.ReLU(inplace=True), | |
nn.Dropout(), | |
nn.Linear(l3, l2), | |
nn.ReLU(inplace=True), | |
nn.Dropout(), | |
nn.Linear(l2, l1), | |
nn.ReLU(inplace=True), | |
nn.Linear(l1, cls_num), | |
) | |
else: | |
return torch.nn.Sequential( | |
nn.Dropout(), | |
nn.Conv2d(output_size, l3, kernel_size=(1, 1), stride=(1, 1)), | |
nn.ReLU(inplace=True), | |
nn.AdaptiveAvgPool2d(output_size=(1, 1)), | |
nn.Flatten(), | |
nn.Linear(l3, l2), | |
nn.ReLU(inplace=True), | |
nn.Dropout(), | |
nn.Linear(l2, l1), | |
nn.ReLU(inplace=True), | |
nn.Linear(l1, cls_num), | |
) | |
def _set_outsize(self): | |
for name, module in self.model.named_modules(): | |
if ( | |
str(name).__contains__("classifier") | |
or str(name).__eq__("fc") | |
or str(name).__contains__("head") | |
or hasattr(module, "classifier") | |
): | |
if isinstance(module, torch.nn.Linear): | |
self.output_size = module.in_features | |
return True | |
if isinstance(module, torch.nn.Conv2d): | |
self.output_size = module.in_channels | |
return False | |
return False | |
def _set_classifier(self, cls_num: int, linear_output: bool): | |
if self.m_type == "convnext": | |
del self.model.classifier[2] | |
self.model.classifier = nn.Sequential( | |
*list(self.model.classifier) | |
+ list(self._classifier(cls_num, self.output_size, linear_output)) | |
) | |
return | |
elif self.m_type == "maxvit": | |
del self.model.classifier[5] | |
self.model.classifier = nn.Sequential( | |
*list(self.model.classifier) | |
+ list(self._classifier(cls_num, self.output_size, linear_output)) | |
) | |
return | |
if hasattr(self.model, "classifier"): | |
self.model.classifier = self._classifier( | |
cls_num, self.output_size, linear_output | |
) | |
return | |
elif hasattr(self.model, "fc"): | |
self.model.fc = self._classifier(cls_num, self.output_size, linear_output) | |
return | |
elif hasattr(self.model, "head"): | |
self.model.head = self._classifier(cls_num, self.output_size, linear_output) | |
return | |
self.model.heads.head = self._classifier( | |
cls_num, self.output_size, linear_output | |
) | |
def forward(self, x: torch.Tensor): | |
if torch.cuda.is_available(): | |
x = x.cuda() | |
self.model = self.model.cuda() | |
if self.m_type == "googlenet": | |
return self.model(x)[0] | |
else: | |
return self.model(x) | |