import os from PIL import Image, ImageOps, ImageChops import io import fitz # PyMuPDF from docx import Document from rembg import remove import gradio as gr from hezar.models import Model from ultralytics import YOLO import json # ایجاد دایرکتوری‌های لازم os.makedirs("static", exist_ok=True) os.makedirs("output_images", exist_ok=True) def trim_whitespace(image): gray_image = ImageOps.grayscale(image) inverted_image = ImageChops.invert(gray_image) bbox = inverted_image.getbbox() trimmed_image = image.crop(bbox) return trimmed_image def convert_pdf_to_images(pdf_path, zoom=2): pdf_document = fitz.open(pdf_path) images = [] for page_num in range(len(pdf_document)): page = pdf_document.load_page(page_num) matrix = fitz.Matrix(zoom, zoom) pix = page.get_pixmap(matrix=matrix) image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples) trimmed_image = trim_whitespace(image) images.append(trimmed_image) return images def convert_docx_to_jpeg(docx_bytes): document = Document(BytesIO(docx_bytes)) images = [] for rel in document.part.rels.values(): if "image" in rel.target_ref: image_stream = rel.target_part.blob image = Image.open(BytesIO(image_stream)) jpeg_image = BytesIO() image.convert('RGB').save(jpeg_image, format="JPEG") jpeg_image.seek(0) images.append(Image.open(jpeg_image)) return images def remove_background_from_image(image): return remove(image) def process_file(input_file): file_extension = os.path.splitext(input_file.name)[1].lower() images = [] if file_extension in ['.png', '.jpeg', '.jpg', '.bmp', '.gif']: image = Image.open(input_file) image = image.convert('RGB') output_image = remove_background_from_image(image) images.append(output_image) elif file_extension == '.pdf': images = convert_pdf_to_images(input_file.name) images = [remove_background_from_image(image) for image in images] elif file_extension in ['.docx', '.doc']: images = convert_docx_to_jpeg(input_file.name) images = [remove_background_from_image(image) for image in images] else: return "File format not supported." input_folder = 'output_images' for i, img in enumerate(images): img.save(os.path.join(input_folder, f'image_{i}.jpg')) return images def run_detection_and_ocr(): # Load models ocr_model = Model.load('hezarai/crnn-fa-printed-96-long') yolo_model = YOLO("/content/drive/MyDrive/train3/weights/best.pt") input_folder = 'output_images' yolo_model.predict(input_folder, save=True, imgsz=320, conf=0.5, save_crop=True) output_folder = '/content/runs/detect/predict' results = [] for filename in os.listdir(input_folder): if filename.endswith('.JPEG') or filename.endswith('.jpg'): image_path = os.path.join(input_folder, filename) crop_folder = os.path.join(output_folder, 'crops') crops = [] for crop_label in os.listdir(crop_folder): crop_label_folder = os.path.join(crop_folder, crop_label) if os.path.isdir(crop_label_folder): for crop_filename in os.listdir(crop_label_folder): crop_image_path = os.path.join(crop_label_folder, crop_filename) text_prediction = predict_text(ocr_model, crop_image_path) crops.append({ 'crop_image_path': crop_image_path, 'text_prediction': text_prediction, 'class_label': crop_label }) results.append({ 'image': filename, 'crops': crops }) output_json_path = 'output.json' with open(output_json_path, 'w', encoding='utf-8') as f: json.dump(results, f, ensure_ascii=False, indent=4) return output_json_path def predict_text(model, image_path): try: image = Image.open(image_path) image = image.resize((320, 320)) output = model.predict(image) if isinstance(output, list): return ' '.join([item['text'] for item in output]) return str(output) except FileNotFoundError: return "N/A" def gradio_interface(input_file): process_file(input_file) json_output = run_detection_and_ocr() with open(json_output, 'r', encoding='utf-8') as f: return json.load(f) iface = gr.Interface( fn=gradio_interface, inputs=gr.File(label="Upload Word, PDF, or Image"), outputs=gr.JSON(label="JSON Output"), title="Document to JSON Converter with Background Removal" ) if __name__ == "__main__": iface.launch()