Spaces:
Paused
Paused
File size: 7,925 Bytes
819c0e1 046b1e3 141a5cd 89c0f3c 141a5cd 66cdd61 141a5cd 66cdd61 141a5cd fe84005 205ce56 fe84005 036b110 fe84005 23771bd 141a5cd 89fdef5 141a5cd 89c0f3c 141a5cd 046b1e3 141a5cd faf19c1 f239270 141a5cd faf19c1 f239270 141a5cd faf19c1 f239270 141a5cd 046b1e3 141a5cd faf19c1 f239270 141a5cd 8e1a142 141a5cd 4d4e16c faf19c1 f239270 141a5cd 046b1e3 ed48478 3b03cc7 ed48478 0d50329 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
import gradio as gr
from vid2persona import init
from vid2persona.pipeline import vlm
from vid2persona.pipeline import llm
init.init_model("HuggingFaceH4/zephyr-7b-beta")
init.auth_gcp()
init.get_env_vars()
prompt_tpl_path = "vid2persona/prompts"
async def extract_traits(video_path):
traits = await vlm.get_traits(
init.gcp_project_id,
init.gcp_project_location,
video_path,
prompt_tpl_path
)
if 'characters' in traits:
traits = traits['characters'][0]
return [
traits, [],
gr.Textbox("", interactive=True),
gr.Button(interactive=True),
gr.Button(interactive=True),
gr.Button(interactive=True)
]
async def conversation(
message: str, messages: list, traits: dict,
model_id: str, max_input_token_length: int,
max_new_tokens: int, temperature: float,
top_p: float, top_k: float, repetition_penalty: float,
):
messages = messages + [[message, ""]]
yield [messages, message, gr.Button(interactive=False), gr.Button(interactive=False)]
async for partial_response in llm.chat(
message, messages, traits,
prompt_tpl_path, model_id,
max_input_token_length, max_new_tokens,
temperature, top_p, top_k,
repetition_penalty, hf_token=init.hf_access_token
):
last_message = messages[-1]
last_message[1] = last_message[1] + partial_response
messages[-1] = last_message
yield [messages, "", gr.Button(interactive=False), gr.Button(interactive=False)]
yield [messages, "", gr.Button(interactive=True), gr.Button(interactive=True)]
async def regen_conversation(
messages: list, traits: dict,
model_id: str, max_input_token_length: int,
max_new_tokens: int, temperature: float,
top_p: float, top_k: float, repetition_penalty: float,
):
if len(messages) > 0:
message = messages[-1][0]
messages = messages[:-1]
messages = messages + [[message, ""]]
yield [messages, "", gr.Button(interactive=False), gr.Button(interactive=False)]
async for partial_response in llm.chat(
message, messages, traits,
prompt_tpl_path, model_id,
max_input_token_length, max_new_tokens,
temperature, top_p, top_k,
repetition_penalty, hf_token=init.hf_access_token
):
last_message = messages[-1]
last_message[1] = last_message[1] + partial_response
messages[-1] = last_message
yield [messages, "", gr.Button(interactive=False), gr.Button(interactive=False)]
yield [messages, "", gr.Button(interactive=True), gr.Button(interactive=True)]
with gr.Blocks(css="styles.css", theme=gr.themes.Soft()) as demo:
gr.Markdown("Vid2Persona", elem_classes=["md-center", "h1-font"])
gr.Markdown("This project breathes life into video characters by using AI to describe their personality and then chat with you as them. "
"[Gemini 1.0 Pro Vision model on Vertex AI](https://cloud.google.com/vertex-ai/generative-ai/docs/multimodal/overview) is used "
"to grasp traits of video characters, then [HuggingFaceH4/zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) model "
"is used to make conversation with them.",)
gr.Markdown("This space is modified to be working on Hugging Face [ZeroGPU](https://huggingface.co/zero-gpu-explorers). If you wish to run "
"the same application on your own machine, please check out the [project repository](https://github.com/deep-diver/Vid2Persona). "
"You can interact with other LLMs to make conversation besides HuggingFaceH4/zephyr-7b-beta by running them locally, or by "
"connecting them through remotely hosted within Text Generation Inference framework as [Hugging Face PRO](https://huggingface.co/blog/inference-pro) user.")
with gr.Column(elem_classes=["group"]):
with gr.Row():
video = gr.Video(label="upload short video clip", max_length=180)
traits = gr.Json(label="extracted traits")
with gr.Row():
trait_gen = gr.Button("generate traits")
with gr.Column(elem_classes=["group"]):
chatbot = gr.Chatbot([], label="chatbot", elem_id="chatbot", elem_classes=["chatbot-no-label"])
with gr.Row():
clear = gr.Button("clear conversation", interactive=False)
regen = gr.Button("regenerate the last", interactive=False)
stop = gr.Button("stop", interactive=False)
user_input = gr.Textbox(placeholder="ask anything", interactive=False, elem_classes=["textbox-no-label", "textbox-no-top-bottom-borders"])
with gr.Accordion("parameters' control pane", open=False):
model_id = gr.Dropdown(choices=init.ALLOWED_LLM_FOR_HF_PRO_ACCOUNTS, value="HuggingFaceH4/zephyr-7b-beta", label="Model ID", visible=False)
with gr.Row():
max_input_token_length = gr.Slider(minimum=1024, maximum=4096, value=4096, label="max-input-tokens")
max_new_tokens = gr.Slider(minimum=128, maximum=2048, value=256, label="max-new-tokens")
with gr.Row():
temperature = gr.Slider(minimum=0, maximum=2, step=0.1, value=0.6, label="temperature")
top_p = gr.Slider(minimum=0, maximum=2, step=0.1, value=0.9, label="top-p")
top_k = gr.Slider(minimum=0, maximum=2, step=0.1, value=50, label="top-k")
repetition_penalty = gr.Slider(minimum=0, maximum=2, step=0.1, value=1.2, label="repetition-penalty")
with gr.Row():
gr.Markdown(
"[![GitHub Repo](https://img.shields.io/badge/GitHub%20Repo-gray?style=for-the-badge&logo=github&link=https://github.com/deep-diver/Vid2Persona)](https://github.com/deep-diver/Vid2Persona) "
"[![Chansung](https://img.shields.io/badge/Chansung-blue?style=for-the-badge&logo=twitter&link=https://twitter.com/algo_diver)](https://twitter.com/algo_diver) "
"[![Sayak](https://img.shields.io/badge/Sayak-blue?style=for-the-badge&logo=twitter&link=https://twitter.com/RisingSayak)](https://twitter.com/RisingSayak )",
elem_id="bottom-md"
)
trait_gen.click(
extract_traits,
[video],
[traits, chatbot, user_input, clear, regen, stop],
concurrency_limit=5,
)
conv = user_input.submit(
conversation,
[
user_input, chatbot, traits,
model_id, max_input_token_length,
max_new_tokens, temperature,
top_p, top_k, repetition_penalty,
],
[chatbot, user_input, clear, regen],
concurrency_limit=5,
)
clear.click(
lambda: [
gr.Chatbot([]),
gr.Button(interactive=False),
gr.Button(interactive=False),
],
None, [chatbot, clear, regen],
concurrency_limit=5,
)
conv_regen = regen.click(
regen_conversation,
[
chatbot, traits,
model_id, max_input_token_length,
max_new_tokens, temperature,
top_p, top_k, repetition_penalty,
],
[chatbot, user_input, clear, regen],
concurrency_limit=5,
)
stop.click(
lambda: [
gr.Button(interactive=True),
gr.Button(interactive=True),
gr.Button(interactive=True),
], None, [clear, regen, stop],
cancels=[conv, conv_regen],
concurrency_limit=5,
)
gr.Examples(
[["assets/sample1.mp4"], ["assets/sample2.mp4"], ["assets/sample3.mp4"], ["assets/sample4.mp4"]],
video,
[traits, chatbot, user_input, clear, regen, stop],
extract_traits,
cache_examples=True
)
demo.queue(
max_size=256
).launch(
debug=True
) |