chaouch commited on
Commit
b239645
1 Parent(s): dbfdf1a
Files changed (2) hide show
  1. app.py +32 -15
  2. requirements.txt +1 -1
app.py CHANGED
@@ -3,38 +3,53 @@ import numpy as np
3
  import torch
4
  from datasets import load_dataset
5
 
6
- from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
7
 
8
 
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
10
 
11
  # load speech translation checkpoint
12
- asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
 
13
 
14
  # load text-to-speech checkpoint and speaker embeddings
15
- processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
16
 
17
- model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
18
- vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
 
 
19
 
20
- embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
21
- speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
 
 
 
 
 
 
22
 
23
 
24
  def translate(audio):
25
- outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
 
26
  return outputs["text"]
27
 
28
 
29
- def synthesise(text):
30
- inputs = processor(text=text, return_tensors="pt")
31
- speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
 
 
 
 
 
32
  return speech.cpu()
33
 
34
 
35
  def speech_to_speech_translation(audio):
36
  translated_text = translate(audio)
37
- synthesised_speech = synthesise(translated_text)
38
  synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
39
  return 16000, synthesised_speech
40
 
@@ -44,9 +59,10 @@ description = """
44
  Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
45
  [SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
46
 
47
- ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
48
  """
49
 
 
50
  demo = gr.Blocks()
51
 
52
  mic_translate = gr.Interface(
@@ -67,6 +83,7 @@ file_translate = gr.Interface(
67
  )
68
 
69
  with demo:
70
- gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
 
71
 
72
- demo.launch()
 
3
  import torch
4
  from datasets import load_dataset
5
 
6
+ from transformers import pipeline, AutoTokenizer, VitsModel, VitsTokenizer
7
 
8
 
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
10
 
11
  # load speech translation checkpoint
12
+ asr_pipe = pipeline("automatic-speech-recognition",
13
+ model="openai/whisper-base", device=device)
14
 
15
  # load text-to-speech checkpoint and speaker embeddings
16
+ # processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
17
 
18
+ # model = SpeechT5ForTextToSpeech.from_pretrained(
19
+ # "microsoft/speecht5_tts").to(device)
20
+ # vocoder = SpeechT5HifiGan.from_pretrained(
21
+ # "microsoft/speecht5_hifigan").to(device)
22
 
23
+ # embeddings_dataset = load_dataset(
24
+ # "Matthijs/cmu-arctic-xvectors", split="validation")
25
+ # speaker_embeddings = torch.tensor(
26
+ # embeddings_dataset[7306]["xvector"]).unsqueeze(0)
27
+
28
+
29
+ model_nld = VitsModel.from_pretrained("facebook/mms-tts-nld")
30
+ tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-nld")
31
 
32
 
33
  def translate(audio):
34
+ outputs = asr_pipe(audio, max_new_tokens=256,
35
+ generate_kwargs={"task": "translate"})
36
  return outputs["text"]
37
 
38
 
39
+ def synthesise2(text):
40
+ # inputs = processor(text=text, return_tensors="pt")
41
+ # speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
42
+ inputs = tokenizer(text, return_tensors="pt")
43
+ input_ids = inputs["input_ids"]
44
+ with torch.no_grad():
45
+ outputs = model_nld(input_ids)
46
+ speech = outputs["waveform"]
47
  return speech.cpu()
48
 
49
 
50
  def speech_to_speech_translation(audio):
51
  translated_text = translate(audio)
52
+ synthesised_speech = synthesise2(translated_text)
53
  synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
54
  return 16000, synthesised_speech
55
 
 
59
  Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
60
  [SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
61
 
62
+ ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Digram of cascaded speech to speech translation")
63
  """
64
 
65
+
66
  demo = gr.Blocks()
67
 
68
  mic_translate = gr.Interface(
 
83
  )
84
 
85
  with demo:
86
+ gr.TabbedInterface([mic_translate, file_translate],
87
+ ["Microphone", "Audio File"])
88
 
89
+ demo.launch()
requirements.txt CHANGED
@@ -1,4 +1,4 @@
1
  torch
2
- git+https://github.com/huggingface/transformers
3
  datasets
4
  sentencepiece
 
1
  torch
2
+ git+https://github.com/hollance/transformers.git@6900e8ba6532162a8613d2270ec2286c3f58f57b
3
  datasets
4
  sentencepiece