File size: 11,760 Bytes
a1d409e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
import os
from dataclasses import dataclass
from typing import List, Optional, Union

import tqdm
from filelock import FileLock

from transformers import (
    BartTokenizer,
    BartTokenizerFast,
    DataProcessor,
    PreTrainedTokenizer,
    RobertaTokenizer,
    RobertaTokenizerFast,
    XLMRobertaTokenizer,
    is_tf_available,
    is_torch_available,
)


logger = logging.getLogger(__name__)


@dataclass(frozen=True)
class InputExample:
    """
    A single training/test example for simple sequence classification.

    Args:
        guid: Unique id for the example.
        text_a: string. The untokenized text of the first sequence. For single
            sequence tasks, only this sequence must be specified.
        text_b: (Optional) string. The untokenized text of the second sequence.
            Only must be specified for sequence pair tasks.
        label: (Optional) string. The label of the example. This should be
            specified for train and dev examples, but not for test examples.
        pairID: (Optional) string. Unique identifier for the pair of sentences.
    """

    guid: str
    text_a: str
    text_b: Optional[str] = None
    label: Optional[str] = None
    pairID: Optional[str] = None


@dataclass(frozen=True)
class InputFeatures:
    """
    A single set of features of data.
    Property names are the same names as the corresponding inputs to a model.

    Args:
        input_ids: Indices of input sequence tokens in the vocabulary.
        attention_mask: Mask to avoid performing attention on padding token indices.
            Mask values selected in ``[0, 1]``:
            Usually  ``1`` for tokens that are NOT MASKED, ``0`` for MASKED (padded) tokens.
        token_type_ids: (Optional) Segment token indices to indicate first and second
            portions of the inputs. Only some models use them.
        label: (Optional) Label corresponding to the input. Int for classification problems,
            float for regression problems.
        pairID: (Optional) Unique identifier for the pair of sentences.
    """

    input_ids: List[int]
    attention_mask: Optional[List[int]] = None
    token_type_ids: Optional[List[int]] = None
    label: Optional[Union[int, float]] = None
    pairID: Optional[int] = None


if is_torch_available():
    import torch
    from torch.utils.data import Dataset

    class HansDataset(Dataset):
        """
        This will be superseded by a framework-agnostic approach
        soon.
        """

        features: List[InputFeatures]

        def __init__(
            self,
            data_dir: str,
            tokenizer: PreTrainedTokenizer,
            task: str,
            max_seq_length: Optional[int] = None,
            overwrite_cache=False,
            evaluate: bool = False,
        ):
            processor = hans_processors[task]()

            cached_features_file = os.path.join(
                data_dir,
                "cached_{}_{}_{}_{}".format(
                    "dev" if evaluate else "train",
                    tokenizer.__class__.__name__,
                    str(max_seq_length),
                    task,
                ),
            )
            label_list = processor.get_labels()
            if tokenizer.__class__ in (
                RobertaTokenizer,
                RobertaTokenizerFast,
                XLMRobertaTokenizer,
                BartTokenizer,
                BartTokenizerFast,
            ):
                # HACK(label indices are swapped in RoBERTa pretrained model)
                label_list[1], label_list[2] = label_list[2], label_list[1]
            self.label_list = label_list

            # Make sure only the first process in distributed training processes the dataset,
            # and the others will use the cache.
            lock_path = cached_features_file + ".lock"
            with FileLock(lock_path):
                if os.path.exists(cached_features_file) and not overwrite_cache:
                    logger.info(f"Loading features from cached file {cached_features_file}")
                    self.features = torch.load(cached_features_file)
                else:
                    logger.info(f"Creating features from dataset file at {data_dir}")

                    examples = (
                        processor.get_dev_examples(data_dir) if evaluate else processor.get_train_examples(data_dir)
                    )

                    logger.info("Training examples: %s", len(examples))
                    self.features = hans_convert_examples_to_features(examples, label_list, max_seq_length, tokenizer)
                    logger.info("Saving features into cached file %s", cached_features_file)
                    torch.save(self.features, cached_features_file)

        def __len__(self):
            return len(self.features)

        def __getitem__(self, i) -> InputFeatures:
            return self.features[i]

        def get_labels(self):
            return self.label_list


if is_tf_available():
    import tensorflow as tf

    class TFHansDataset:
        """
        This will be superseded by a framework-agnostic approach
        soon.
        """

        features: List[InputFeatures]

        def __init__(
            self,
            data_dir: str,
            tokenizer: PreTrainedTokenizer,
            task: str,
            max_seq_length: Optional[int] = 128,
            overwrite_cache=False,
            evaluate: bool = False,
        ):
            processor = hans_processors[task]()
            label_list = processor.get_labels()
            if tokenizer.__class__ in (
                RobertaTokenizer,
                RobertaTokenizerFast,
                XLMRobertaTokenizer,
                BartTokenizer,
                BartTokenizerFast,
            ):
                # HACK(label indices are swapped in RoBERTa pretrained model)
                label_list[1], label_list[2] = label_list[2], label_list[1]
            self.label_list = label_list

            examples = processor.get_dev_examples(data_dir) if evaluate else processor.get_train_examples(data_dir)
            self.features = hans_convert_examples_to_features(examples, label_list, max_seq_length, tokenizer)

            def gen():
                for ex_index, ex in tqdm.tqdm(enumerate(self.features), desc="convert examples to features"):
                    if ex_index % 10000 == 0:
                        logger.info("Writing example %d of %d" % (ex_index, len(examples)))

                    yield (
                        {
                            "example_id": 0,
                            "input_ids": ex.input_ids,
                            "attention_mask": ex.attention_mask,
                            "token_type_ids": ex.token_type_ids,
                        },
                        ex.label,
                    )

            self.dataset = tf.data.Dataset.from_generator(
                gen,
                (
                    {
                        "example_id": tf.int32,
                        "input_ids": tf.int32,
                        "attention_mask": tf.int32,
                        "token_type_ids": tf.int32,
                    },
                    tf.int64,
                ),
                (
                    {
                        "example_id": tf.TensorShape([]),
                        "input_ids": tf.TensorShape([None, None]),
                        "attention_mask": tf.TensorShape([None, None]),
                        "token_type_ids": tf.TensorShape([None, None]),
                    },
                    tf.TensorShape([]),
                ),
            )

        def get_dataset(self):
            return self.dataset

        def __len__(self):
            return len(self.features)

        def __getitem__(self, i) -> InputFeatures:
            return self.features[i]

        def get_labels(self):
            return self.label_list


class HansProcessor(DataProcessor):
    """Processor for the HANS data set."""

    def get_train_examples(self, data_dir):
        """See base class."""
        return self._create_examples(self._read_tsv(os.path.join(data_dir, "heuristics_train_set.txt")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(self._read_tsv(os.path.join(data_dir, "heuristics_evaluation_set.txt")), "dev")

    def get_labels(self):
        """See base class.
        Note that we follow the standard three labels for MNLI
        (see :class:`~transformers.data.processors.utils.MnliProcessor`)
        but the HANS evaluation groups `contradiction` and `neutral` into `non-entailment` (label 0) while
        `entailment` is label 1."""
        return ["contradiction", "entailment", "neutral"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for i, line in enumerate(lines):
            if i == 0:
                continue
            guid = "%s-%s" % (set_type, line[0])
            text_a = line[5]
            text_b = line[6]
            pairID = line[7][2:] if line[7].startswith("ex") else line[7]
            label = line[0]
            examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label, pairID=pairID))
        return examples


def hans_convert_examples_to_features(
    examples: List[InputExample],
    label_list: List[str],
    max_length: int,
    tokenizer: PreTrainedTokenizer,
):
    """
    Loads a data file into a list of ``InputFeatures``

    Args:
        examples: List of ``InputExamples`` containing the examples.
        label_list: List of labels. Can be obtained from the processor using the ``processor.get_labels()`` method.
        max_length: Maximum example length.
        tokenizer: Instance of a tokenizer that will tokenize the examples.

    Returns:
        A list of task-specific ``InputFeatures`` which can be fed to the model.

    """

    label_map = {label: i for i, label in enumerate(label_list)}

    features = []
    for ex_index, example in tqdm.tqdm(enumerate(examples), desc="convert examples to features"):
        if ex_index % 10000 == 0:
            logger.info("Writing example %d" % (ex_index))

        inputs = tokenizer(
            example.text_a,
            example.text_b,
            add_special_tokens=True,
            max_length=max_length,
            padding="max_length",
            truncation=True,
            return_overflowing_tokens=True,
        )

        label = label_map[example.label] if example.label in label_map else 0

        pairID = int(example.pairID)

        features.append(InputFeatures(**inputs, label=label, pairID=pairID))

    for i, example in enumerate(examples[:5]):
        logger.info("*** Example ***")
        logger.info(f"guid: {example}")
        logger.info(f"features: {features[i]}")

    return features


hans_tasks_num_labels = {
    "hans": 3,
}

hans_processors = {
    "hans": HansProcessor,
}