Spaces:
Runtime error
Runtime error
File size: 73,744 Bytes
a1d409e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 |
"""
coding=utf-8
Copyright 2018, Antonio Mendoza Hao Tan, Mohit Bansal
Adapted From Facebook Inc, Detectron2 && Huggingface Co.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.import copy
"""
import itertools
import math
import os
from abc import ABCMeta, abstractmethod
from collections import OrderedDict, namedtuple
from typing import Dict, List, Tuple
import numpy as np
import torch
from torch import nn
from torch.nn.modules.batchnorm import BatchNorm2d
from torchvision.ops import RoIPool
from torchvision.ops.boxes import batched_nms, nms
from utils import WEIGHTS_NAME, Config, cached_path, hf_bucket_url, is_remote_url, load_checkpoint
# other:
def norm_box(boxes, raw_sizes):
if not isinstance(boxes, torch.Tensor):
normalized_boxes = boxes.copy()
else:
normalized_boxes = boxes.clone()
normalized_boxes[:, :, (0, 2)] /= raw_sizes[:, 1]
normalized_boxes[:, :, (1, 3)] /= raw_sizes[:, 0]
return normalized_boxes
def pad_list_tensors(
list_tensors,
preds_per_image,
max_detections=None,
return_tensors=None,
padding=None,
pad_value=0,
location=None,
):
"""
location will always be cpu for np tensors
"""
if location is None:
location = "cpu"
assert return_tensors in {"pt", "np", None}
assert padding in {"max_detections", "max_batch", None}
new = []
if padding is None:
if return_tensors is None:
return list_tensors
elif return_tensors == "pt":
if not isinstance(list_tensors, torch.Tensor):
return torch.stack(list_tensors).to(location)
else:
return list_tensors.to(location)
else:
if not isinstance(list_tensors, list):
return np.array(list_tensors.to(location))
else:
return list_tensors.to(location)
if padding == "max_detections":
assert max_detections is not None, "specify max number of detections per batch"
elif padding == "max_batch":
max_detections = max(preds_per_image)
for i in range(len(list_tensors)):
too_small = False
tensor_i = list_tensors.pop(0)
if tensor_i.ndim < 2:
too_small = True
tensor_i = tensor_i.unsqueeze(-1)
assert isinstance(tensor_i, torch.Tensor)
tensor_i = nn.functional.pad(
input=tensor_i,
pad=(0, 0, 0, max_detections - preds_per_image[i]),
mode="constant",
value=pad_value,
)
if too_small:
tensor_i = tensor_i.squeeze(-1)
if return_tensors is None:
if location == "cpu":
tensor_i = tensor_i.cpu()
tensor_i = tensor_i.tolist()
if return_tensors == "np":
if location == "cpu":
tensor_i = tensor_i.cpu()
tensor_i = tensor_i.numpy()
else:
if location == "cpu":
tensor_i = tensor_i.cpu()
new.append(tensor_i)
if return_tensors == "np":
return np.stack(new, axis=0)
elif return_tensors == "pt" and not isinstance(new, torch.Tensor):
return torch.stack(new, dim=0)
else:
return list_tensors
def do_nms(boxes, scores, image_shape, score_thresh, nms_thresh, mind, maxd):
scores = scores[:, :-1]
num_bbox_reg_classes = boxes.shape[1] // 4
# Convert to Boxes to use the `clip` function ...
boxes = boxes.reshape(-1, 4)
_clip_box(boxes, image_shape)
boxes = boxes.view(-1, num_bbox_reg_classes, 4) # R x C x 4
# Select max scores
max_scores, max_classes = scores.max(1) # R x C --> R
num_objs = boxes.size(0)
boxes = boxes.view(-1, 4)
idxs = torch.arange(num_objs).to(boxes.device) * num_bbox_reg_classes + max_classes
max_boxes = boxes[idxs] # Select max boxes according to the max scores.
# Apply NMS
keep = nms(max_boxes, max_scores, nms_thresh)
keep = keep[:maxd]
if keep.shape[-1] >= mind and keep.shape[-1] <= maxd:
max_boxes, max_scores = max_boxes[keep], max_scores[keep]
classes = max_classes[keep]
return max_boxes, max_scores, classes, keep
else:
return None
# Helper Functions
def _clip_box(tensor, box_size: Tuple[int, int]):
assert torch.isfinite(tensor).all(), "Box tensor contains infinite or NaN!"
h, w = box_size
tensor[:, 0].clamp_(min=0, max=w)
tensor[:, 1].clamp_(min=0, max=h)
tensor[:, 2].clamp_(min=0, max=w)
tensor[:, 3].clamp_(min=0, max=h)
def _nonempty_boxes(box, threshold: float = 0.0) -> torch.Tensor:
widths = box[:, 2] - box[:, 0]
heights = box[:, 3] - box[:, 1]
keep = (widths > threshold) & (heights > threshold)
return keep
def get_norm(norm, out_channels):
if isinstance(norm, str):
if len(norm) == 0:
return None
norm = {
"BN": BatchNorm2d,
"GN": lambda channels: nn.GroupNorm(32, channels),
"nnSyncBN": nn.SyncBatchNorm, # keep for debugging
"": lambda x: x,
}[norm]
return norm(out_channels)
def _create_grid_offsets(size: List[int], stride: int, offset: float, device):
grid_height, grid_width = size
shifts_x = torch.arange(
offset * stride,
grid_width * stride,
step=stride,
dtype=torch.float32,
device=device,
)
shifts_y = torch.arange(
offset * stride,
grid_height * stride,
step=stride,
dtype=torch.float32,
device=device,
)
shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x)
shift_x = shift_x.reshape(-1)
shift_y = shift_y.reshape(-1)
return shift_x, shift_y
def build_backbone(cfg):
input_shape = ShapeSpec(channels=len(cfg.MODEL.PIXEL_MEAN))
norm = cfg.RESNETS.NORM
stem = BasicStem(
in_channels=input_shape.channels,
out_channels=cfg.RESNETS.STEM_OUT_CHANNELS,
norm=norm,
caffe_maxpool=cfg.MODEL.MAX_POOL,
)
freeze_at = cfg.BACKBONE.FREEZE_AT
if freeze_at >= 1:
for p in stem.parameters():
p.requires_grad = False
out_features = cfg.RESNETS.OUT_FEATURES
depth = cfg.RESNETS.DEPTH
num_groups = cfg.RESNETS.NUM_GROUPS
width_per_group = cfg.RESNETS.WIDTH_PER_GROUP
bottleneck_channels = num_groups * width_per_group
in_channels = cfg.RESNETS.STEM_OUT_CHANNELS
out_channels = cfg.RESNETS.RES2_OUT_CHANNELS
stride_in_1x1 = cfg.RESNETS.STRIDE_IN_1X1
res5_dilation = cfg.RESNETS.RES5_DILATION
assert res5_dilation in {1, 2}, "res5_dilation cannot be {}.".format(res5_dilation)
num_blocks_per_stage = {50: [3, 4, 6, 3], 101: [3, 4, 23, 3], 152: [3, 8, 36, 3]}[depth]
stages = []
out_stage_idx = [{"res2": 2, "res3": 3, "res4": 4, "res5": 5}[f] for f in out_features]
max_stage_idx = max(out_stage_idx)
for idx, stage_idx in enumerate(range(2, max_stage_idx + 1)):
dilation = res5_dilation if stage_idx == 5 else 1
first_stride = 1 if idx == 0 or (stage_idx == 5 and dilation == 2) else 2
stage_kargs = {
"num_blocks": num_blocks_per_stage[idx],
"first_stride": first_stride,
"in_channels": in_channels,
"bottleneck_channels": bottleneck_channels,
"out_channels": out_channels,
"num_groups": num_groups,
"norm": norm,
"stride_in_1x1": stride_in_1x1,
"dilation": dilation,
}
stage_kargs["block_class"] = BottleneckBlock
blocks = ResNet.make_stage(**stage_kargs)
in_channels = out_channels
out_channels *= 2
bottleneck_channels *= 2
if freeze_at >= stage_idx:
for block in blocks:
block.freeze()
stages.append(blocks)
return ResNet(stem, stages, out_features=out_features)
def find_top_rpn_proposals(
proposals,
pred_objectness_logits,
images,
image_sizes,
nms_thresh,
pre_nms_topk,
post_nms_topk,
min_box_side_len,
training,
):
"""Args:
proposals (list[Tensor]): (L, N, Hi*Wi*A, 4).
pred_objectness_logits: tensors of length L.
nms_thresh (float): IoU threshold to use for NMS
pre_nms_topk (int): before nms
post_nms_topk (int): after nms
min_box_side_len (float): minimum proposal box side
training (bool): True if proposals are to be used in training,
Returns:
results (List[Dict]): stores post_nms_topk object proposals for image i.
"""
num_images = len(images)
device = proposals[0].device
# 1. Select top-k anchor for every level and every image
topk_scores = [] # #lvl Tensor, each of shape N x topk
topk_proposals = []
level_ids = [] # #lvl Tensor, each of shape (topk,)
batch_idx = torch.arange(num_images, device=device)
for level_id, proposals_i, logits_i in zip(itertools.count(), proposals, pred_objectness_logits):
Hi_Wi_A = logits_i.shape[1]
num_proposals_i = min(pre_nms_topk, Hi_Wi_A)
# sort is faster than topk (https://github.com/pytorch/pytorch/issues/22812)
# topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1)
logits_i, idx = logits_i.sort(descending=True, dim=1)
topk_scores_i = logits_i[batch_idx, :num_proposals_i]
topk_idx = idx[batch_idx, :num_proposals_i]
# each is N x topk
topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4
topk_proposals.append(topk_proposals_i)
topk_scores.append(topk_scores_i)
level_ids.append(torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device))
# 2. Concat all levels together
topk_scores = torch.cat(topk_scores, dim=1)
topk_proposals = torch.cat(topk_proposals, dim=1)
level_ids = torch.cat(level_ids, dim=0)
# if I change to batched_nms, I wonder if this will make a difference
# 3. For each image, run a per-level NMS, and choose topk results.
results = []
for n, image_size in enumerate(image_sizes):
boxes = topk_proposals[n]
scores_per_img = topk_scores[n]
# I will have to take a look at the boxes clip method
_clip_box(boxes, image_size)
# filter empty boxes
keep = _nonempty_boxes(boxes, threshold=min_box_side_len)
lvl = level_ids
if keep.sum().item() != len(boxes):
boxes, scores_per_img, lvl = (
boxes[keep],
scores_per_img[keep],
level_ids[keep],
)
keep = batched_nms(boxes, scores_per_img, lvl, nms_thresh)
keep = keep[:post_nms_topk]
res = (boxes[keep], scores_per_img[keep])
results.append(res)
# I wonder if it would be possible for me to pad all these things.
return results
def subsample_labels(labels, num_samples, positive_fraction, bg_label):
"""
Returns:
pos_idx, neg_idx (Tensor):
1D vector of indices. The total length of both is `num_samples` or fewer.
"""
positive = torch.nonzero((labels != -1) & (labels != bg_label)).squeeze(1)
negative = torch.nonzero(labels == bg_label).squeeze(1)
num_pos = int(num_samples * positive_fraction)
# protect against not enough positive examples
num_pos = min(positive.numel(), num_pos)
num_neg = num_samples - num_pos
# protect against not enough negative examples
num_neg = min(negative.numel(), num_neg)
# randomly select positive and negative examples
perm1 = torch.randperm(positive.numel(), device=positive.device)[:num_pos]
perm2 = torch.randperm(negative.numel(), device=negative.device)[:num_neg]
pos_idx = positive[perm1]
neg_idx = negative[perm2]
return pos_idx, neg_idx
def add_ground_truth_to_proposals(gt_boxes, proposals):
raise NotImplementedError()
def add_ground_truth_to_proposals_single_image(gt_boxes, proposals):
raise NotImplementedError()
def _fmt_box_list(box_tensor, batch_index: int):
repeated_index = torch.full(
(len(box_tensor), 1),
batch_index,
dtype=box_tensor.dtype,
device=box_tensor.device,
)
return torch.cat((repeated_index, box_tensor), dim=1)
def convert_boxes_to_pooler_format(box_lists: List[torch.Tensor]):
pooler_fmt_boxes = torch.cat(
[_fmt_box_list(box_list, i) for i, box_list in enumerate(box_lists)],
dim=0,
)
return pooler_fmt_boxes
def assign_boxes_to_levels(
box_lists: List[torch.Tensor],
min_level: int,
max_level: int,
canonical_box_size: int,
canonical_level: int,
):
box_sizes = torch.sqrt(torch.cat([boxes.area() for boxes in box_lists]))
# Eqn.(1) in FPN paper
level_assignments = torch.floor(canonical_level + torch.log2(box_sizes / canonical_box_size + 1e-8))
# clamp level to (min, max), in case the box size is too large or too small
# for the available feature maps
level_assignments = torch.clamp(level_assignments, min=min_level, max=max_level)
return level_assignments.to(torch.int64) - min_level
# Helper Classes
class _NewEmptyTensorOp(torch.autograd.Function):
@staticmethod
def forward(ctx, x, new_shape):
ctx.shape = x.shape
return x.new_empty(new_shape)
@staticmethod
def backward(ctx, grad):
shape = ctx.shape
return _NewEmptyTensorOp.apply(grad, shape), None
class ShapeSpec(namedtuple("_ShapeSpec", ["channels", "height", "width", "stride"])):
def __new__(cls, *, channels=None, height=None, width=None, stride=None):
return super().__new__(cls, channels, height, width, stride)
class Box2BoxTransform(object):
"""
This R-CNN transformation scales the box's width and height
by exp(dw), exp(dh) and shifts a box's center by the offset
(dx * width, dy * height).
"""
def __init__(self, weights: Tuple[float, float, float, float], scale_clamp: float = None):
"""
Args:
weights (4-element tuple): Scaling factors that are applied to the
(dx, dy, dw, dh) deltas. In Fast R-CNN, these were originally set
such that the deltas have unit variance; now they are treated as
hyperparameters of the system.
scale_clamp (float): When predicting deltas, the predicted box scaling
factors (dw and dh) are clamped such that they are <= scale_clamp.
"""
self.weights = weights
if scale_clamp is not None:
self.scale_clamp = scale_clamp
else:
"""
Value for clamping large dw and dh predictions.
The heuristic is that we clamp such that dw and dh are no larger
than what would transform a 16px box into a 1000px box
(based on a small anchor, 16px, and a typical image size, 1000px).
"""
self.scale_clamp = math.log(1000.0 / 16)
def get_deltas(self, src_boxes, target_boxes):
"""
Get box regression transformation deltas (dx, dy, dw, dh) that can be used
to transform the `src_boxes` into the `target_boxes`. That is, the relation
``target_boxes == self.apply_deltas(deltas, src_boxes)`` is true (unless
any delta is too large and is clamped).
Args:
src_boxes (Tensor): source boxes, e.g., object proposals
target_boxes (Tensor): target of the transformation, e.g., ground-truth
boxes.
"""
assert isinstance(src_boxes, torch.Tensor), type(src_boxes)
assert isinstance(target_boxes, torch.Tensor), type(target_boxes)
src_widths = src_boxes[:, 2] - src_boxes[:, 0]
src_heights = src_boxes[:, 3] - src_boxes[:, 1]
src_ctr_x = src_boxes[:, 0] + 0.5 * src_widths
src_ctr_y = src_boxes[:, 1] + 0.5 * src_heights
target_widths = target_boxes[:, 2] - target_boxes[:, 0]
target_heights = target_boxes[:, 3] - target_boxes[:, 1]
target_ctr_x = target_boxes[:, 0] + 0.5 * target_widths
target_ctr_y = target_boxes[:, 1] + 0.5 * target_heights
wx, wy, ww, wh = self.weights
dx = wx * (target_ctr_x - src_ctr_x) / src_widths
dy = wy * (target_ctr_y - src_ctr_y) / src_heights
dw = ww * torch.log(target_widths / src_widths)
dh = wh * torch.log(target_heights / src_heights)
deltas = torch.stack((dx, dy, dw, dh), dim=1)
assert (src_widths > 0).all().item(), "Input boxes to Box2BoxTransform are not valid!"
return deltas
def apply_deltas(self, deltas, boxes):
"""
Apply transformation `deltas` (dx, dy, dw, dh) to `boxes`.
Args:
deltas (Tensor): transformation deltas of shape (N, k*4), where k >= 1.
deltas[i] represents k potentially different class-specific
box transformations for the single box boxes[i].
boxes (Tensor): boxes to transform, of shape (N, 4)
"""
boxes = boxes.to(deltas.dtype)
widths = boxes[:, 2] - boxes[:, 0]
heights = boxes[:, 3] - boxes[:, 1]
ctr_x = boxes[:, 0] + 0.5 * widths
ctr_y = boxes[:, 1] + 0.5 * heights
wx, wy, ww, wh = self.weights
dx = deltas[:, 0::4] / wx
dy = deltas[:, 1::4] / wy
dw = deltas[:, 2::4] / ww
dh = deltas[:, 3::4] / wh
# Prevent sending too large values into torch.exp()
dw = torch.clamp(dw, max=self.scale_clamp)
dh = torch.clamp(dh, max=self.scale_clamp)
pred_ctr_x = dx * widths[:, None] + ctr_x[:, None]
pred_ctr_y = dy * heights[:, None] + ctr_y[:, None]
pred_w = torch.exp(dw) * widths[:, None]
pred_h = torch.exp(dh) * heights[:, None]
pred_boxes = torch.zeros_like(deltas)
pred_boxes[:, 0::4] = pred_ctr_x - 0.5 * pred_w # x1
pred_boxes[:, 1::4] = pred_ctr_y - 0.5 * pred_h # y1
pred_boxes[:, 2::4] = pred_ctr_x + 0.5 * pred_w # x2
pred_boxes[:, 3::4] = pred_ctr_y + 0.5 * pred_h # y2
return pred_boxes
class Matcher(object):
"""
This class assigns to each predicted "element" (e.g., a box) a ground-truth
element. Each predicted element will have exactly zero or one matches; each
ground-truth element may be matched to zero or more predicted elements.
The matching is determined by the MxN match_quality_matrix, that characterizes
how well each (ground-truth, prediction)-pair match each other. For example,
if the elements are boxes, this matrix may contain box intersection-over-union
overlap values.
The matcher returns (a) a vector of length N containing the index of the
ground-truth element m in [0, M) that matches to prediction n in [0, N).
(b) a vector of length N containing the labels for each prediction.
"""
def __init__(
self,
thresholds: List[float],
labels: List[int],
allow_low_quality_matches: bool = False,
):
"""
Args:
thresholds (list): a list of thresholds used to stratify predictions
into levels.
labels (list): a list of values to label predictions belonging at
each level. A label can be one of {-1, 0, 1} signifying
{ignore, negative class, positive class}, respectively.
allow_low_quality_matches (bool): if True, produce additional matches or predictions with maximum match quality lower than high_threshold.
For example, thresholds = [0.3, 0.5] labels = [0, -1, 1] All predictions with iou < 0.3 will be marked with 0 and
thus will be considered as false positives while training. All predictions with 0.3 <= iou < 0.5 will be marked with -1 and
thus will be ignored. All predictions with 0.5 <= iou will be marked with 1 and thus will be considered as true positives.
"""
thresholds = thresholds[:]
assert thresholds[0] > 0
thresholds.insert(0, -float("inf"))
thresholds.append(float("inf"))
assert all([low <= high for (low, high) in zip(thresholds[:-1], thresholds[1:])])
assert all([label_i in [-1, 0, 1] for label_i in labels])
assert len(labels) == len(thresholds) - 1
self.thresholds = thresholds
self.labels = labels
self.allow_low_quality_matches = allow_low_quality_matches
def __call__(self, match_quality_matrix):
"""
Args:
match_quality_matrix (Tensor[float]): an MxN tensor, containing the pairwise quality between M ground-truth elements and N predicted
elements. All elements must be >= 0 (due to the us of `torch.nonzero` for selecting indices in :meth:`set_low_quality_matches_`).
Returns:
matches (Tensor[int64]): a vector of length N, where matches[i] is a matched ground-truth index in [0, M)
match_labels (Tensor[int8]): a vector of length N, where pred_labels[i] indicates true or false positive or ignored
"""
assert match_quality_matrix.dim() == 2
if match_quality_matrix.numel() == 0:
default_matches = match_quality_matrix.new_full((match_quality_matrix.size(1),), 0, dtype=torch.int64)
# When no gt boxes exist, we define IOU = 0 and therefore set labels
# to `self.labels[0]`, which usually defaults to background class 0
# To choose to ignore instead,
# can make labels=[-1,0,-1,1] + set appropriate thresholds
default_match_labels = match_quality_matrix.new_full(
(match_quality_matrix.size(1),), self.labels[0], dtype=torch.int8
)
return default_matches, default_match_labels
assert torch.all(match_quality_matrix >= 0)
# match_quality_matrix is M (gt) x N (predicted)
# Max over gt elements (dim 0) to find best gt candidate for each prediction
matched_vals, matches = match_quality_matrix.max(dim=0)
match_labels = matches.new_full(matches.size(), 1, dtype=torch.int8)
for l, low, high in zip(self.labels, self.thresholds[:-1], self.thresholds[1:]):
low_high = (matched_vals >= low) & (matched_vals < high)
match_labels[low_high] = l
if self.allow_low_quality_matches:
self.set_low_quality_matches_(match_labels, match_quality_matrix)
return matches, match_labels
def set_low_quality_matches_(self, match_labels, match_quality_matrix):
"""
Produce additional matches for predictions that have only low-quality matches.
Specifically, for each ground-truth G find the set of predictions that have
maximum overlap with it (including ties); for each prediction in that set, if
it is unmatched, then match it to the ground-truth G.
This function implements the RPN assignment case (i)
in Sec. 3.1.2 of Faster R-CNN.
"""
# For each gt, find the prediction with which it has highest quality
highest_quality_foreach_gt, _ = match_quality_matrix.max(dim=1)
# Find the highest quality match available, even if it is low, including ties.
# Note that the matches qualities must be positive due to the use of
# `torch.nonzero`.
of_quality_inds = match_quality_matrix == highest_quality_foreach_gt[:, None]
if of_quality_inds.dim() == 0:
(_, pred_inds_with_highest_quality) = of_quality_inds.unsqueeze(0).nonzero().unbind(1)
else:
(_, pred_inds_with_highest_quality) = of_quality_inds.nonzero().unbind(1)
match_labels[pred_inds_with_highest_quality] = 1
class RPNOutputs(object):
def __init__(
self,
box2box_transform,
anchor_matcher,
batch_size_per_image,
positive_fraction,
images,
pred_objectness_logits,
pred_anchor_deltas,
anchors,
boundary_threshold=0,
gt_boxes=None,
smooth_l1_beta=0.0,
):
"""
Args:
box2box_transform (Box2BoxTransform): :class:`Box2BoxTransform` instance for anchor-proposal transformations.
anchor_matcher (Matcher): :class:`Matcher` instance for matching anchors to ground-truth boxes; used to determine training labels.
batch_size_per_image (int): number of proposals to sample when training
positive_fraction (float): target fraction of sampled proposals that should be positive
images (ImageList): :class:`ImageList` instance representing N input images
pred_objectness_logits (list[Tensor]): A list of L elements. Element i is a tensor of shape (N, A, Hi, W)
pred_anchor_deltas (list[Tensor]): A list of L elements. Element i is a tensor of shape (N, A*4, Hi, Wi)
anchors (list[torch.Tensor]): nested list of boxes. anchors[i][j] at (n, l) stores anchor array for feature map l
boundary_threshold (int): if >= 0, then anchors that extend beyond the image boundary by more than boundary_thresh are not used in training.
gt_boxes (list[Boxes], optional): A list of N elements.
smooth_l1_beta (float): The transition point between L1 and L2 lossn. When set to 0, the loss becomes L1. When +inf, it is ignored
"""
self.box2box_transform = box2box_transform
self.anchor_matcher = anchor_matcher
self.batch_size_per_image = batch_size_per_image
self.positive_fraction = positive_fraction
self.pred_objectness_logits = pred_objectness_logits
self.pred_anchor_deltas = pred_anchor_deltas
self.anchors = anchors
self.gt_boxes = gt_boxes
self.num_feature_maps = len(pred_objectness_logits)
self.num_images = len(images)
self.boundary_threshold = boundary_threshold
self.smooth_l1_beta = smooth_l1_beta
def _get_ground_truth(self):
raise NotImplementedError()
def predict_proposals(self):
# pred_anchor_deltas: (L, N, ? Hi, Wi)
# anchors:(N, L, -1, B)
# here we loop over specific feature map, NOT images
proposals = []
anchors = self.anchors.transpose(0, 1)
for anchors_i, pred_anchor_deltas_i in zip(anchors, self.pred_anchor_deltas):
B = anchors_i.size(-1)
N, _, Hi, Wi = pred_anchor_deltas_i.shape
anchors_i = anchors_i.flatten(start_dim=0, end_dim=1)
pred_anchor_deltas_i = pred_anchor_deltas_i.view(N, -1, B, Hi, Wi).permute(0, 3, 4, 1, 2).reshape(-1, B)
proposals_i = self.box2box_transform.apply_deltas(pred_anchor_deltas_i, anchors_i)
# Append feature map proposals with shape (N, Hi*Wi*A, B)
proposals.append(proposals_i.view(N, -1, B))
proposals = torch.stack(proposals)
return proposals
def predict_objectness_logits(self):
"""
Returns:
pred_objectness_logits (list[Tensor]) -> (N, Hi*Wi*A).
"""
pred_objectness_logits = [
# Reshape: (N, A, Hi, Wi) -> (N, Hi, Wi, A) -> (N, Hi*Wi*A)
score.permute(0, 2, 3, 1).reshape(self.num_images, -1)
for score in self.pred_objectness_logits
]
return pred_objectness_logits
# Main Classes
class Conv2d(nn.Conv2d):
def __init__(self, *args, **kwargs):
norm = kwargs.pop("norm", None)
activation = kwargs.pop("activation", None)
super().__init__(*args, **kwargs)
self.norm = norm
self.activation = activation
def forward(self, x):
if x.numel() == 0 and self.training:
assert not isinstance(self.norm, nn.SyncBatchNorm)
if x.numel() == 0:
assert not isinstance(self.norm, nn.GroupNorm)
output_shape = [
(i + 2 * p - (di * (k - 1) + 1)) // s + 1
for i, p, di, k, s in zip(
x.shape[-2:],
self.padding,
self.dilation,
self.kernel_size,
self.stride,
)
]
output_shape = [x.shape[0], self.weight.shape[0]] + output_shape
empty = _NewEmptyTensorOp.apply(x, output_shape)
if self.training:
_dummy = sum(x.view(-1)[0] for x in self.parameters()) * 0.0
return empty + _dummy
else:
return empty
x = super().forward(x)
if self.norm is not None:
x = self.norm(x)
if self.activation is not None:
x = self.activation(x)
return x
class LastLevelMaxPool(nn.Module):
"""
This module is used in the original FPN to generate a downsampled P6 feature from P5.
"""
def __init__(self):
super().__init__()
self.num_levels = 1
self.in_feature = "p5"
def forward(self, x):
return [nn.functional.max_pool2d(x, kernel_size=1, stride=2, padding=0)]
class LastLevelP6P7(nn.Module):
"""
This module is used in RetinaNet to generate extra layers, P6 and P7 from C5 feature.
"""
def __init__(self, in_channels, out_channels):
super().__init__()
self.num_levels = 2
self.in_feature = "res5"
self.p6 = nn.Conv2d(in_channels, out_channels, 3, 2, 1)
self.p7 = nn.Conv2d(out_channels, out_channels, 3, 2, 1)
def forward(self, c5):
p6 = self.p6(c5)
p7 = self.p7(nn.functional.relu(p6))
return [p6, p7]
class BasicStem(nn.Module):
def __init__(self, in_channels=3, out_channels=64, norm="BN", caffe_maxpool=False):
super().__init__()
self.conv1 = Conv2d(
in_channels,
out_channels,
kernel_size=7,
stride=2,
padding=3,
bias=False,
norm=get_norm(norm, out_channels),
)
self.caffe_maxpool = caffe_maxpool
# use pad 1 instead of pad zero
def forward(self, x):
x = self.conv1(x)
x = nn.functional.relu_(x)
if self.caffe_maxpool:
x = nn.functional.max_pool2d(x, kernel_size=3, stride=2, padding=0, ceil_mode=True)
else:
x = nn.functional.max_pool2d(x, kernel_size=3, stride=2, padding=1)
return x
@property
def out_channels(self):
return self.conv1.out_channels
@property
def stride(self):
return 4 # = stride 2 conv -> stride 2 max pool
class ResNetBlockBase(nn.Module):
def __init__(self, in_channels, out_channels, stride):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.stride = stride
def freeze(self):
for p in self.parameters():
p.requires_grad = False
return self
class BottleneckBlock(ResNetBlockBase):
def __init__(
self,
in_channels,
out_channels,
bottleneck_channels,
stride=1,
num_groups=1,
norm="BN",
stride_in_1x1=False,
dilation=1,
):
super().__init__(in_channels, out_channels, stride)
if in_channels != out_channels:
self.shortcut = Conv2d(
in_channels,
out_channels,
kernel_size=1,
stride=stride,
bias=False,
norm=get_norm(norm, out_channels),
)
else:
self.shortcut = None
# The original MSRA ResNet models have stride in the first 1x1 conv
# The subsequent fb.torch.resnet and Caffe2 ResNe[X]t implementations have
# stride in the 3x3 conv
stride_1x1, stride_3x3 = (stride, 1) if stride_in_1x1 else (1, stride)
self.conv1 = Conv2d(
in_channels,
bottleneck_channels,
kernel_size=1,
stride=stride_1x1,
bias=False,
norm=get_norm(norm, bottleneck_channels),
)
self.conv2 = Conv2d(
bottleneck_channels,
bottleneck_channels,
kernel_size=3,
stride=stride_3x3,
padding=1 * dilation,
bias=False,
groups=num_groups,
dilation=dilation,
norm=get_norm(norm, bottleneck_channels),
)
self.conv3 = Conv2d(
bottleneck_channels,
out_channels,
kernel_size=1,
bias=False,
norm=get_norm(norm, out_channels),
)
def forward(self, x):
out = self.conv1(x)
out = nn.functional.relu_(out)
out = self.conv2(out)
out = nn.functional.relu_(out)
out = self.conv3(out)
if self.shortcut is not None:
shortcut = self.shortcut(x)
else:
shortcut = x
out += shortcut
out = nn.functional.relu_(out)
return out
class Backbone(nn.Module, metaclass=ABCMeta):
def __init__(self):
super().__init__()
@abstractmethod
def forward(self):
pass
@property
def size_divisibility(self):
"""
Some backbones require the input height and width to be divisible by a specific integer. This is
typically true for encoder / decoder type networks with lateral connection (e.g., FPN) for which feature maps need to match
dimension in the "bottom up" and "top down" paths. Set to 0 if no specific input size divisibility is required.
"""
return 0
def output_shape(self):
return {
name: ShapeSpec(
channels=self._out_feature_channels[name],
stride=self._out_feature_strides[name],
)
for name in self._out_features
}
@property
def out_features(self):
"""deprecated"""
return self._out_features
@property
def out_feature_strides(self):
"""deprecated"""
return {f: self._out_feature_strides[f] for f in self._out_features}
@property
def out_feature_channels(self):
"""deprecated"""
return {f: self._out_feature_channels[f] for f in self._out_features}
class ResNet(Backbone):
def __init__(self, stem, stages, num_classes=None, out_features=None):
"""
Args:
stem (nn.Module): a stem module
stages (list[list[ResNetBlock]]): several (typically 4) stages, each contains multiple :class:`ResNetBlockBase`.
num_classes (None or int): if None, will not perform classification.
out_features (list[str]): name of the layers whose outputs should be returned in forward. Can be anything in:
"stem", "linear", or "res2" ... If None, will return the output of the last layer.
"""
super(ResNet, self).__init__()
self.stem = stem
self.num_classes = num_classes
current_stride = self.stem.stride
self._out_feature_strides = {"stem": current_stride}
self._out_feature_channels = {"stem": self.stem.out_channels}
self.stages_and_names = []
for i, blocks in enumerate(stages):
for block in blocks:
assert isinstance(block, ResNetBlockBase), block
curr_channels = block.out_channels
stage = nn.Sequential(*blocks)
name = "res" + str(i + 2)
self.add_module(name, stage)
self.stages_and_names.append((stage, name))
self._out_feature_strides[name] = current_stride = int(
current_stride * np.prod([k.stride for k in blocks])
)
self._out_feature_channels[name] = blocks[-1].out_channels
if num_classes is not None:
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.linear = nn.Linear(curr_channels, num_classes)
# Sec 5.1 in "Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour":
# "The 1000-way fully-connected layer is initialized by
# drawing weights from a zero-mean Gaussian with std of 0.01."
nn.init.normal_(self.linear.weight, stddev=0.01)
name = "linear"
if out_features is None:
out_features = [name]
self._out_features = out_features
assert len(self._out_features)
children = [x[0] for x in self.named_children()]
for out_feature in self._out_features:
assert out_feature in children, "Available children: {}".format(", ".join(children))
def forward(self, x):
outputs = {}
x = self.stem(x)
if "stem" in self._out_features:
outputs["stem"] = x
for stage, name in self.stages_and_names:
x = stage(x)
if name in self._out_features:
outputs[name] = x
if self.num_classes is not None:
x = self.avgpool(x)
x = self.linear(x)
if "linear" in self._out_features:
outputs["linear"] = x
return outputs
def output_shape(self):
return {
name: ShapeSpec(
channels=self._out_feature_channels[name],
stride=self._out_feature_strides[name],
)
for name in self._out_features
}
@staticmethod
def make_stage(
block_class,
num_blocks,
first_stride=None,
*,
in_channels,
out_channels,
**kwargs,
):
"""
Usually, layers that produce the same feature map spatial size
are defined as one "stage".
Under such definition, stride_per_block[1:] should all be 1.
"""
if first_stride is not None:
assert "stride" not in kwargs and "stride_per_block" not in kwargs
kwargs["stride_per_block"] = [first_stride] + [1] * (num_blocks - 1)
blocks = []
for i in range(num_blocks):
curr_kwargs = {}
for k, v in kwargs.items():
if k.endswith("_per_block"):
assert (
len(v) == num_blocks
), f"Argument '{k}' of make_stage should have the same length as num_blocks={num_blocks}."
newk = k[: -len("_per_block")]
assert newk not in kwargs, f"Cannot call make_stage with both {k} and {newk}!"
curr_kwargs[newk] = v[i]
else:
curr_kwargs[k] = v
blocks.append(block_class(in_channels=in_channels, out_channels=out_channels, **curr_kwargs))
in_channels = out_channels
return blocks
class ROIPooler(nn.Module):
"""
Region of interest feature map pooler that supports pooling from one or more
feature maps.
"""
def __init__(
self,
output_size,
scales,
sampling_ratio,
canonical_box_size=224,
canonical_level=4,
):
super().__init__()
# assumption that stride is a power of 2.
min_level = -math.log2(scales[0])
max_level = -math.log2(scales[-1])
# a bunch of testing
assert math.isclose(min_level, int(min_level)) and math.isclose(max_level, int(max_level))
assert len(scales) == max_level - min_level + 1, "not pyramid"
assert 0 < min_level and min_level <= max_level
if isinstance(output_size, int):
output_size = (output_size, output_size)
assert len(output_size) == 2 and isinstance(output_size[0], int) and isinstance(output_size[1], int)
if len(scales) > 1:
assert min_level <= canonical_level and canonical_level <= max_level
assert canonical_box_size > 0
self.output_size = output_size
self.min_level = int(min_level)
self.max_level = int(max_level)
self.level_poolers = nn.ModuleList(RoIPool(output_size, spatial_scale=scale) for scale in scales)
self.canonical_level = canonical_level
self.canonical_box_size = canonical_box_size
def forward(self, feature_maps, boxes):
"""
Args:
feature_maps: List[torch.Tensor(N,C,W,H)]
box_lists: list[torch.Tensor])
Returns:
A tensor of shape(N*B, Channels, output_size, output_size)
"""
x = list(feature_maps.values())
num_level_assignments = len(self.level_poolers)
assert len(x) == num_level_assignments and len(boxes) == x[0].size(0)
pooler_fmt_boxes = convert_boxes_to_pooler_format(boxes)
if num_level_assignments == 1:
return self.level_poolers[0](x[0], pooler_fmt_boxes)
level_assignments = assign_boxes_to_levels(
boxes,
self.min_level,
self.max_level,
self.canonical_box_size,
self.canonical_level,
)
num_boxes = len(pooler_fmt_boxes)
num_channels = x[0].shape[1]
output_size = self.output_size[0]
dtype, device = x[0].dtype, x[0].device
output = torch.zeros(
(num_boxes, num_channels, output_size, output_size),
dtype=dtype,
device=device,
)
for level, (x_level, pooler) in enumerate(zip(x, self.level_poolers)):
inds = torch.nonzero(level_assignments == level).squeeze(1)
pooler_fmt_boxes_level = pooler_fmt_boxes[inds]
output[inds] = pooler(x_level, pooler_fmt_boxes_level)
return output
class ROIOutputs(object):
def __init__(self, cfg, training=False):
self.smooth_l1_beta = cfg.ROI_BOX_HEAD.SMOOTH_L1_BETA
self.box2box_transform = Box2BoxTransform(weights=cfg.ROI_BOX_HEAD.BBOX_REG_WEIGHTS)
self.training = training
self.score_thresh = cfg.ROI_HEADS.SCORE_THRESH_TEST
self.min_detections = cfg.MIN_DETECTIONS
self.max_detections = cfg.MAX_DETECTIONS
nms_thresh = cfg.ROI_HEADS.NMS_THRESH_TEST
if not isinstance(nms_thresh, list):
nms_thresh = [nms_thresh]
self.nms_thresh = nms_thresh
def _predict_boxes(self, proposals, box_deltas, preds_per_image):
num_pred = box_deltas.size(0)
B = proposals[0].size(-1)
K = box_deltas.size(-1) // B
box_deltas = box_deltas.view(num_pred * K, B)
proposals = torch.cat(proposals, dim=0).unsqueeze(-2).expand(num_pred, K, B)
proposals = proposals.reshape(-1, B)
boxes = self.box2box_transform.apply_deltas(box_deltas, proposals)
return boxes.view(num_pred, K * B).split(preds_per_image, dim=0)
def _predict_objs(self, obj_logits, preds_per_image):
probs = nn.functional.softmax(obj_logits, dim=-1)
probs = probs.split(preds_per_image, dim=0)
return probs
def _predict_attrs(self, attr_logits, preds_per_image):
attr_logits = attr_logits[..., :-1].softmax(-1)
attr_probs, attrs = attr_logits.max(-1)
return attr_probs.split(preds_per_image, dim=0), attrs.split(preds_per_image, dim=0)
@torch.no_grad()
def inference(
self,
obj_logits,
attr_logits,
box_deltas,
pred_boxes,
features,
sizes,
scales=None,
):
# only the pred boxes is the
preds_per_image = [p.size(0) for p in pred_boxes]
boxes_all = self._predict_boxes(pred_boxes, box_deltas, preds_per_image)
obj_scores_all = self._predict_objs(obj_logits, preds_per_image) # list of length N
attr_probs_all, attrs_all = self._predict_attrs(attr_logits, preds_per_image)
features = features.split(preds_per_image, dim=0)
# fun for each image too, also I can experiment and do multiple images
final_results = []
zipped = zip(boxes_all, obj_scores_all, attr_probs_all, attrs_all, sizes)
for i, (boxes, obj_scores, attr_probs, attrs, size) in enumerate(zipped):
for nms_t in self.nms_thresh:
outputs = do_nms(
boxes,
obj_scores,
size,
self.score_thresh,
nms_t,
self.min_detections,
self.max_detections,
)
if outputs is not None:
max_boxes, max_scores, classes, ids = outputs
break
if scales is not None:
scale_yx = scales[i]
max_boxes[:, 0::2] *= scale_yx[1]
max_boxes[:, 1::2] *= scale_yx[0]
final_results.append(
(
max_boxes,
classes,
max_scores,
attrs[ids],
attr_probs[ids],
features[i][ids],
)
)
boxes, classes, class_probs, attrs, attr_probs, roi_features = map(list, zip(*final_results))
return boxes, classes, class_probs, attrs, attr_probs, roi_features
def training(self, obj_logits, attr_logits, box_deltas, pred_boxes, features, sizes):
pass
def __call__(
self,
obj_logits,
attr_logits,
box_deltas,
pred_boxes,
features,
sizes,
scales=None,
):
if self.training:
raise NotImplementedError()
return self.inference(
obj_logits,
attr_logits,
box_deltas,
pred_boxes,
features,
sizes,
scales=scales,
)
class Res5ROIHeads(nn.Module):
"""
ROIHeads perform all per-region computation in an R-CNN.
It contains logic of cropping the regions, extract per-region features
(by the res-5 block in this case), and make per-region predictions.
"""
def __init__(self, cfg, input_shape):
super().__init__()
self.batch_size_per_image = cfg.RPN.BATCH_SIZE_PER_IMAGE
self.positive_sample_fraction = cfg.ROI_HEADS.POSITIVE_FRACTION
self.in_features = cfg.ROI_HEADS.IN_FEATURES
self.num_classes = cfg.ROI_HEADS.NUM_CLASSES
self.proposal_append_gt = cfg.ROI_HEADS.PROPOSAL_APPEND_GT
self.feature_strides = {k: v.stride for k, v in input_shape.items()}
self.feature_channels = {k: v.channels for k, v in input_shape.items()}
self.cls_agnostic_bbox_reg = cfg.ROI_BOX_HEAD.CLS_AGNOSTIC_BBOX_REG
self.stage_channel_factor = 2**3 # res5 is 8x res2
self.out_channels = cfg.RESNETS.RES2_OUT_CHANNELS * self.stage_channel_factor
# self.proposal_matcher = Matcher(
# cfg.ROI_HEADS.IOU_THRESHOLDS,
# cfg.ROI_HEADS.IOU_LABELS,
# allow_low_quality_matches=False,
# )
pooler_resolution = cfg.ROI_BOX_HEAD.POOLER_RESOLUTION
pooler_scales = (1.0 / self.feature_strides[self.in_features[0]],)
sampling_ratio = cfg.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO
res5_halve = cfg.ROI_BOX_HEAD.RES5HALVE
use_attr = cfg.ROI_BOX_HEAD.ATTR
num_attrs = cfg.ROI_BOX_HEAD.NUM_ATTRS
self.pooler = ROIPooler(
output_size=pooler_resolution,
scales=pooler_scales,
sampling_ratio=sampling_ratio,
)
self.res5 = self._build_res5_block(cfg)
if not res5_halve:
"""
Modifications for VG in RoI heads:
1. Change the stride of conv1 and shortcut in Res5.Block1 from 2 to 1
2. Modifying all conv2 with (padding: 1 --> 2) and (dilation: 1 --> 2)
"""
self.res5[0].conv1.stride = (1, 1)
self.res5[0].shortcut.stride = (1, 1)
for i in range(3):
self.res5[i].conv2.padding = (2, 2)
self.res5[i].conv2.dilation = (2, 2)
self.box_predictor = FastRCNNOutputLayers(
self.out_channels,
self.num_classes,
self.cls_agnostic_bbox_reg,
use_attr=use_attr,
num_attrs=num_attrs,
)
def _build_res5_block(self, cfg):
stage_channel_factor = self.stage_channel_factor # res5 is 8x res2
num_groups = cfg.RESNETS.NUM_GROUPS
width_per_group = cfg.RESNETS.WIDTH_PER_GROUP
bottleneck_channels = num_groups * width_per_group * stage_channel_factor
out_channels = self.out_channels
stride_in_1x1 = cfg.RESNETS.STRIDE_IN_1X1
norm = cfg.RESNETS.NORM
blocks = ResNet.make_stage(
BottleneckBlock,
3,
first_stride=2,
in_channels=out_channels // 2,
bottleneck_channels=bottleneck_channels,
out_channels=out_channels,
num_groups=num_groups,
norm=norm,
stride_in_1x1=stride_in_1x1,
)
return nn.Sequential(*blocks)
def _shared_roi_transform(self, features, boxes):
x = self.pooler(features, boxes)
return self.res5(x)
def forward(self, features, proposal_boxes, gt_boxes=None):
if self.training:
"""
see https://github.com/airsplay/py-bottom-up-attention/\
blob/master/detectron2/modeling/roi_heads/roi_heads.py
"""
raise NotImplementedError()
assert not proposal_boxes[0].requires_grad
box_features = self._shared_roi_transform(features, proposal_boxes)
feature_pooled = box_features.mean(dim=[2, 3]) # pooled to 1x1
obj_logits, attr_logits, pred_proposal_deltas = self.box_predictor(feature_pooled)
return obj_logits, attr_logits, pred_proposal_deltas, feature_pooled
class AnchorGenerator(nn.Module):
"""
For a set of image sizes and feature maps, computes a set of anchors.
"""
def __init__(self, cfg, input_shape: List[ShapeSpec]):
super().__init__()
sizes = cfg.ANCHOR_GENERATOR.SIZES
aspect_ratios = cfg.ANCHOR_GENERATOR.ASPECT_RATIOS
self.strides = [x.stride for x in input_shape]
self.offset = cfg.ANCHOR_GENERATOR.OFFSET
assert 0.0 <= self.offset < 1.0, self.offset
"""
sizes (list[list[int]]): sizes[i] is the list of anchor sizes for feat map i
1. given in absolute lengths in units of the input image;
2. they do not dynamically scale if the input image size changes.
aspect_ratios (list[list[float]])
strides (list[int]): stride of each input feature.
"""
self.num_features = len(self.strides)
self.cell_anchors = nn.ParameterList(self._calculate_anchors(sizes, aspect_ratios))
self._spacial_feat_dim = 4
def _calculate_anchors(self, sizes, aspect_ratios):
# If one size (or aspect ratio) is specified and there are multiple feature
# maps, then we "broadcast" anchors of that single size (or aspect ratio)
if len(sizes) == 1:
sizes *= self.num_features
if len(aspect_ratios) == 1:
aspect_ratios *= self.num_features
assert self.num_features == len(sizes)
assert self.num_features == len(aspect_ratios)
cell_anchors = [self.generate_cell_anchors(s, a).float() for s, a in zip(sizes, aspect_ratios)]
return cell_anchors
@property
def box_dim(self):
return self._spacial_feat_dim
@property
def num_cell_anchors(self):
"""
Returns:
list[int]: Each int is the number of anchors at every pixel location, on that feature map.
"""
return [len(cell_anchors) for cell_anchors in self.cell_anchors]
def grid_anchors(self, grid_sizes):
anchors = []
for size, stride, base_anchors in zip(grid_sizes, self.strides, self.cell_anchors):
shift_x, shift_y = _create_grid_offsets(size, stride, self.offset, base_anchors.device)
shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1)
anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4))
return anchors
def generate_cell_anchors(self, sizes=(32, 64, 128, 256, 512), aspect_ratios=(0.5, 1, 2)):
"""
anchors are continuous geometric rectangles
centered on one feature map point sample.
We can later build the set of anchors
for the entire feature map by tiling these tensors
"""
anchors = []
for size in sizes:
area = size**2.0
for aspect_ratio in aspect_ratios:
w = math.sqrt(area / aspect_ratio)
h = aspect_ratio * w
x0, y0, x1, y1 = -w / 2.0, -h / 2.0, w / 2.0, h / 2.0
anchors.append([x0, y0, x1, y1])
return nn.Parameter(torch.tensor(anchors))
def forward(self, features):
"""
Args:
features List[torch.Tensor]: list of feature maps on which to generate anchors.
Returns:
torch.Tensor: a list of #image elements.
"""
num_images = features[0].size(0)
grid_sizes = [feature_map.shape[-2:] for feature_map in features]
anchors_over_all_feature_maps = self.grid_anchors(grid_sizes)
anchors_over_all_feature_maps = torch.stack(anchors_over_all_feature_maps)
return anchors_over_all_feature_maps.unsqueeze(0).repeat_interleave(num_images, dim=0)
class RPNHead(nn.Module):
"""
RPN classification and regression heads. Uses a 3x3 conv to produce a shared
hidden state from which one 1x1 conv predicts objectness logits for each anchor
and a second 1x1 conv predicts bounding-box deltas specifying how to deform
each anchor into an object proposal.
"""
def __init__(self, cfg, input_shape: List[ShapeSpec]):
super().__init__()
# Standard RPN is shared across levels:
in_channels = [s.channels for s in input_shape]
assert len(set(in_channels)) == 1, "Each level must have the same channel!"
in_channels = in_channels[0]
anchor_generator = AnchorGenerator(cfg, input_shape)
num_cell_anchors = anchor_generator.num_cell_anchors
box_dim = anchor_generator.box_dim
assert len(set(num_cell_anchors)) == 1, "Each level must have the same number of cell anchors"
num_cell_anchors = num_cell_anchors[0]
if cfg.PROPOSAL_GENERATOR.HIDDEN_CHANNELS == -1:
hid_channels = in_channels
else:
hid_channels = cfg.PROPOSAL_GENERATOR.HIDDEN_CHANNELS
# Modifications for VG in RPN (modeling/proposal_generator/rpn.py)
# Use hidden dim instead fo the same dim as Res4 (in_channels)
# 3x3 conv for the hidden representation
self.conv = nn.Conv2d(in_channels, hid_channels, kernel_size=3, stride=1, padding=1)
# 1x1 conv for predicting objectness logits
self.objectness_logits = nn.Conv2d(hid_channels, num_cell_anchors, kernel_size=1, stride=1)
# 1x1 conv for predicting box2box transform deltas
self.anchor_deltas = nn.Conv2d(hid_channels, num_cell_anchors * box_dim, kernel_size=1, stride=1)
for layer in [self.conv, self.objectness_logits, self.anchor_deltas]:
nn.init.normal_(layer.weight, std=0.01)
nn.init.constant_(layer.bias, 0)
def forward(self, features):
"""
Args:
features (list[Tensor]): list of feature maps
"""
pred_objectness_logits = []
pred_anchor_deltas = []
for x in features:
t = nn.functional.relu(self.conv(x))
pred_objectness_logits.append(self.objectness_logits(t))
pred_anchor_deltas.append(self.anchor_deltas(t))
return pred_objectness_logits, pred_anchor_deltas
class RPN(nn.Module):
"""
Region Proposal Network, introduced by the Faster R-CNN paper.
"""
def __init__(self, cfg, input_shape: Dict[str, ShapeSpec]):
super().__init__()
self.min_box_side_len = cfg.PROPOSAL_GENERATOR.MIN_SIZE
self.in_features = cfg.RPN.IN_FEATURES
self.nms_thresh = cfg.RPN.NMS_THRESH
self.batch_size_per_image = cfg.RPN.BATCH_SIZE_PER_IMAGE
self.positive_fraction = cfg.RPN.POSITIVE_FRACTION
self.smooth_l1_beta = cfg.RPN.SMOOTH_L1_BETA
self.loss_weight = cfg.RPN.LOSS_WEIGHT
self.pre_nms_topk = {
True: cfg.RPN.PRE_NMS_TOPK_TRAIN,
False: cfg.RPN.PRE_NMS_TOPK_TEST,
}
self.post_nms_topk = {
True: cfg.RPN.POST_NMS_TOPK_TRAIN,
False: cfg.RPN.POST_NMS_TOPK_TEST,
}
self.boundary_threshold = cfg.RPN.BOUNDARY_THRESH
self.anchor_generator = AnchorGenerator(cfg, [input_shape[f] for f in self.in_features])
self.box2box_transform = Box2BoxTransform(weights=cfg.RPN.BBOX_REG_WEIGHTS)
self.anchor_matcher = Matcher(
cfg.RPN.IOU_THRESHOLDS,
cfg.RPN.IOU_LABELS,
allow_low_quality_matches=True,
)
self.rpn_head = RPNHead(cfg, [input_shape[f] for f in self.in_features])
def training(self, images, image_shapes, features, gt_boxes):
pass
def inference(self, outputs, images, image_shapes, features, gt_boxes=None):
outputs = find_top_rpn_proposals(
outputs.predict_proposals(),
outputs.predict_objectness_logits(),
images,
image_shapes,
self.nms_thresh,
self.pre_nms_topk[self.training],
self.post_nms_topk[self.training],
self.min_box_side_len,
self.training,
)
results = []
for img in outputs:
im_boxes, img_box_logits = img
img_box_logits, inds = img_box_logits.sort(descending=True)
im_boxes = im_boxes[inds]
results.append((im_boxes, img_box_logits))
(proposal_boxes, logits) = tuple(map(list, zip(*results)))
return proposal_boxes, logits
def forward(self, images, image_shapes, features, gt_boxes=None):
"""
Args:
images (torch.Tensor): input images of length `N`
features (dict[str: Tensor])
gt_instances
"""
# features is dict, key = block level, v = feature_map
features = [features[f] for f in self.in_features]
pred_objectness_logits, pred_anchor_deltas = self.rpn_head(features)
anchors = self.anchor_generator(features)
outputs = RPNOutputs(
self.box2box_transform,
self.anchor_matcher,
self.batch_size_per_image,
self.positive_fraction,
images,
pred_objectness_logits,
pred_anchor_deltas,
anchors,
self.boundary_threshold,
gt_boxes,
self.smooth_l1_beta,
)
# For RPN-only models, the proposals are the final output
if self.training:
raise NotImplementedError()
return self.training(outputs, images, image_shapes, features, gt_boxes)
else:
return self.inference(outputs, images, image_shapes, features, gt_boxes)
class FastRCNNOutputLayers(nn.Module):
"""
Two linear layers for predicting Fast R-CNN outputs:
(1) proposal-to-detection box regression deltas
(2) classification scores
"""
def __init__(
self,
input_size,
num_classes,
cls_agnostic_bbox_reg,
box_dim=4,
use_attr=False,
num_attrs=-1,
):
"""
Args:
input_size (int): channels, or (channels, height, width)
num_classes (int)
cls_agnostic_bbox_reg (bool)
box_dim (int)
"""
super().__init__()
if not isinstance(input_size, int):
input_size = np.prod(input_size)
# (do + 1 for background class)
self.cls_score = nn.Linear(input_size, num_classes + 1)
num_bbox_reg_classes = 1 if cls_agnostic_bbox_reg else num_classes
self.bbox_pred = nn.Linear(input_size, num_bbox_reg_classes * box_dim)
self.use_attr = use_attr
if use_attr:
"""
Modifications for VG in RoI heads
Embedding: {num_classes + 1} --> {input_size // 8}
Linear: {input_size + input_size // 8} --> {input_size // 4}
Linear: {input_size // 4} --> {num_attrs + 1}
"""
self.cls_embedding = nn.Embedding(num_classes + 1, input_size // 8)
self.fc_attr = nn.Linear(input_size + input_size // 8, input_size // 4)
self.attr_score = nn.Linear(input_size // 4, num_attrs + 1)
nn.init.normal_(self.cls_score.weight, std=0.01)
nn.init.normal_(self.bbox_pred.weight, std=0.001)
for item in [self.cls_score, self.bbox_pred]:
nn.init.constant_(item.bias, 0)
def forward(self, roi_features):
if roi_features.dim() > 2:
roi_features = torch.flatten(roi_features, start_dim=1)
scores = self.cls_score(roi_features)
proposal_deltas = self.bbox_pred(roi_features)
if self.use_attr:
_, max_class = scores.max(-1) # [b, c] --> [b]
cls_emb = self.cls_embedding(max_class) # [b] --> [b, 256]
roi_features = torch.cat([roi_features, cls_emb], -1) # [b, 2048] + [b, 256] --> [b, 2304]
roi_features = self.fc_attr(roi_features)
roi_features = nn.functional.relu(roi_features)
attr_scores = self.attr_score(roi_features)
return scores, attr_scores, proposal_deltas
else:
return scores, proposal_deltas
class GeneralizedRCNN(nn.Module):
def __init__(self, cfg):
super().__init__()
self.device = torch.device(cfg.MODEL.DEVICE)
self.backbone = build_backbone(cfg)
self.proposal_generator = RPN(cfg, self.backbone.output_shape())
self.roi_heads = Res5ROIHeads(cfg, self.backbone.output_shape())
self.roi_outputs = ROIOutputs(cfg)
self.to(self.device)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
config = kwargs.pop("config", None)
state_dict = kwargs.pop("state_dict", None)
cache_dir = kwargs.pop("cache_dir", None)
from_tf = kwargs.pop("from_tf", False)
force_download = kwargs.pop("force_download", False)
resume_download = kwargs.pop("resume_download", False)
proxies = kwargs.pop("proxies", None)
local_files_only = kwargs.pop("local_files_only", False)
use_cdn = kwargs.pop("use_cdn", True)
# Load config if we don't provide a configuration
if not isinstance(config, Config):
config_path = config if config is not None else pretrained_model_name_or_path
# try:
config = Config.from_pretrained(
config_path,
cache_dir=cache_dir,
force_download=force_download,
resume_download=resume_download,
proxies=proxies,
local_files_only=local_files_only,
)
# Load model
if pretrained_model_name_or_path is not None:
if os.path.isdir(pretrained_model_name_or_path):
if os.path.isfile(os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)):
# Load from a PyTorch checkpoint
archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)
else:
raise EnvironmentError(
"Error no file named {} found in directory {} ".format(
WEIGHTS_NAME,
pretrained_model_name_or_path,
)
)
elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path):
archive_file = pretrained_model_name_or_path
elif os.path.isfile(pretrained_model_name_or_path + ".index"):
assert (
from_tf
), "We found a TensorFlow checkpoint at {}, please set from_tf to True to load from this checkpoint".format(
pretrained_model_name_or_path + ".index"
)
archive_file = pretrained_model_name_or_path + ".index"
else:
archive_file = hf_bucket_url(
pretrained_model_name_or_path,
filename=WEIGHTS_NAME,
use_cdn=use_cdn,
)
try:
# Load from URL or cache if already cached
resolved_archive_file = cached_path(
archive_file,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
resume_download=resume_download,
local_files_only=local_files_only,
)
if resolved_archive_file is None:
raise EnvironmentError
except EnvironmentError:
msg = f"Can't load weights for '{pretrained_model_name_or_path}'."
raise EnvironmentError(msg)
if resolved_archive_file == archive_file:
print("loading weights file {}".format(archive_file))
else:
print("loading weights file {} from cache at {}".format(archive_file, resolved_archive_file))
else:
resolved_archive_file = None
# Instantiate model.
model = cls(config)
if state_dict is None:
try:
try:
state_dict = torch.load(resolved_archive_file, map_location="cpu")
except Exception:
state_dict = load_checkpoint(resolved_archive_file)
except Exception:
raise OSError(
"Unable to load weights from pytorch checkpoint file. "
"If you tried to load a PyTorch model from a TF 2.0 checkpoint, please set from_tf=True. "
)
missing_keys = []
unexpected_keys = []
error_msgs = []
# Convert old format to new format if needed from a PyTorch state_dict
old_keys = []
new_keys = []
for key in state_dict.keys():
new_key = None
if "gamma" in key:
new_key = key.replace("gamma", "weight")
if "beta" in key:
new_key = key.replace("beta", "bias")
if new_key:
old_keys.append(key)
new_keys.append(new_key)
for old_key, new_key in zip(old_keys, new_keys):
state_dict[new_key] = state_dict.pop(old_key)
# copy state_dict so _load_from_state_dict can modify it
metadata = getattr(state_dict, "_metadata", None)
state_dict = state_dict.copy()
if metadata is not None:
state_dict._metadata = metadata
model_to_load = model
model_to_load.load_state_dict(state_dict)
if model.__class__.__name__ != model_to_load.__class__.__name__:
base_model_state_dict = model_to_load.state_dict().keys()
head_model_state_dict_without_base_prefix = [
key.split(cls.base_model_prefix + ".")[-1] for key in model.state_dict().keys()
]
missing_keys.extend(head_model_state_dict_without_base_prefix - base_model_state_dict)
if len(unexpected_keys) > 0:
print(
f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when"
f" initializing {model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are"
f" initializing {model.__class__.__name__} from the checkpoint of a model trained on another task or"
" with another architecture (e.g. initializing a BertForSequenceClassification model from a"
" BertForPreTraining model).\n- This IS NOT expected if you are initializing"
f" {model.__class__.__name__} from the checkpoint of a model that you expect to be exactly identical"
" (initializing a BertForSequenceClassification model from a BertForSequenceClassification model)."
)
else:
print(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n")
if len(missing_keys) > 0:
print(
f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
f" {pretrained_model_name_or_path} and are newly initialized: {missing_keys}\nYou should probably"
" TRAIN this model on a down-stream task to be able to use it for predictions and inference."
)
else:
print(
f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at"
f" {pretrained_model_name_or_path}.\nIf your task is similar to the task the model of the checkpoint"
f" was trained on, you can already use {model.__class__.__name__} for predictions without further"
" training."
)
if len(error_msgs) > 0:
raise RuntimeError(
"Error(s) in loading state_dict for {}:\n\t{}".format(
model.__class__.__name__, "\n\t".join(error_msgs)
)
)
# Set model in evaluation mode to deactivate DropOut modules by default
model.eval()
return model
def forward(
self,
images,
image_shapes,
gt_boxes=None,
proposals=None,
scales_yx=None,
**kwargs,
):
"""
kwargs:
max_detections (int), return_tensors {"np", "pt", None}, padding {None,
"max_detections"}, pad_value (int), location = {"cuda", "cpu"}
"""
if self.training:
raise NotImplementedError()
return self.inference(
images=images,
image_shapes=image_shapes,
gt_boxes=gt_boxes,
proposals=proposals,
scales_yx=scales_yx,
**kwargs,
)
@torch.no_grad()
def inference(
self,
images,
image_shapes,
gt_boxes=None,
proposals=None,
scales_yx=None,
**kwargs,
):
# run images through backbone
original_sizes = image_shapes * scales_yx
features = self.backbone(images)
# generate proposals if none are available
if proposals is None:
proposal_boxes, _ = self.proposal_generator(images, image_shapes, features, gt_boxes)
else:
assert proposals is not None
# pool object features from either gt_boxes, or from proposals
obj_logits, attr_logits, box_deltas, feature_pooled = self.roi_heads(features, proposal_boxes, gt_boxes)
# prepare FRCNN Outputs and select top proposals
boxes, classes, class_probs, attrs, attr_probs, roi_features = self.roi_outputs(
obj_logits=obj_logits,
attr_logits=attr_logits,
box_deltas=box_deltas,
pred_boxes=proposal_boxes,
features=feature_pooled,
sizes=image_shapes,
scales=scales_yx,
)
# will we pad???
subset_kwargs = {
"max_detections": kwargs.get("max_detections", None),
"return_tensors": kwargs.get("return_tensors", None),
"pad_value": kwargs.get("pad_value", 0),
"padding": kwargs.get("padding", None),
}
preds_per_image = torch.tensor([p.size(0) for p in boxes])
boxes = pad_list_tensors(boxes, preds_per_image, **subset_kwargs)
classes = pad_list_tensors(classes, preds_per_image, **subset_kwargs)
class_probs = pad_list_tensors(class_probs, preds_per_image, **subset_kwargs)
attrs = pad_list_tensors(attrs, preds_per_image, **subset_kwargs)
attr_probs = pad_list_tensors(attr_probs, preds_per_image, **subset_kwargs)
roi_features = pad_list_tensors(roi_features, preds_per_image, **subset_kwargs)
subset_kwargs["padding"] = None
preds_per_image = pad_list_tensors(preds_per_image, None, **subset_kwargs)
sizes = pad_list_tensors(image_shapes, None, **subset_kwargs)
normalized_boxes = norm_box(boxes, original_sizes)
return OrderedDict(
{
"obj_ids": classes,
"obj_probs": class_probs,
"attr_ids": attrs,
"attr_probs": attr_probs,
"boxes": boxes,
"sizes": sizes,
"preds_per_image": preds_per_image,
"roi_features": roi_features,
"normalized_boxes": normalized_boxes,
}
)
|